全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Foods  2013 

Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction

DOI: 10.3390/foods2030401

Keywords: climacteric ripening, Cucumis melo L., ethylene, introgression lines, fruit quality, HSSE, postharvest

Full-Text   Cite this paper   Add to My Lib

Abstract:

A climacteric aromatic near-isogenic line (NIL) of melon ( Cucumis melo L.) SC3-5-1 contained an introgression of the non-climacteric Korean cultivar “Shongwan Charmi” accession PI 161375 (SC) in the genetic background of the non-climacteric cultivar “Piel de Sapo” (PS). The aroma production was monitored during ripening at 21 °C in intact fruit using headspace sorptive bar extraction (HSSE). Bars were composed of polydimethylsiloxane (PDMS) and aromas were desorbed and analyzed by gas-chromatography mass-spectrometry. The aromatic profile was composed of 70 aromatic compounds plus 21 alkanes with a predominance of esters, particularly acetate (2-methylbutyl acetate, 2-methylpropyl acetate, hexyl acetate, and phenylmethyl acetate). Some compounds were severely affected by postharvest time. The acetate esters (3-methylbutyl acetate, butan-2-yl acetate and phenylmethyl acetate) decreased with ripening and sulfur-derived compounds ( S-methyl butanethioate and S-methyl 3-methylbutanethioate) increased gradually with ripening. A few compounds increased at the senescence phase (propyl ethanoate). Other compounds such as hexadecanoic acid showed a marked decrease after harvest, some decreasing from a relative maximum at harvest (2-methylpropyl hexanoate; n-hexanoic acid; nonanoic acid).

References

[1]  Rodríguez, A.; Alquézar, B.; Pe?a, N. Fruit aromas in mature fleshy fruit as signals of readiness for predation and seed dispersal. New Phytol. 2012, 197, 36–48.
[2]  Ezura, H.; Owino, W.O. Melon, an alternative model plant for elucidating fruit ripening. Plant Sci. 2008, 175, 121–129, doi:10.1016/j.plantsci.2008.02.004.
[3]  Obando-Ulloa, J.; Moreno, E.; Garcia-Mas, J.; Nicolai, B.; Lammertyn, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Climacteric or non-climacteric behavior in melon fruit. 1. Aroma volatiles. Postharvest Biol. Technol. 2008, 49, 27–37, doi:10.1016/j.postharvbio.2007.11.004.
[4]  Obando-Ulloa, J.M.; Nicolai, B.; Lammertyn, J.; Bueso, M.C.; Monforte, A.J.; Fernández-Trujillo, J.P. Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biol. Technol. 2009, 52, 146–155, doi:10.1016/j.postharvbio.2008.11.007.
[5]  Paul, V.; Pandey, R.; Srivastava, G.C. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene: An overview. J. Food Sci. Technol. 2012, 49, 1–21, doi:10.1007/s13197-011-0293-4.
[6]  Pech, J.C.; Bouzayen, M.; Latché, A. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 2008, 175, 114–120, doi:10.1016/j.plantsci.2008.01.003.
[7]  Obando-Ulloa, J.M.; Jowkar, M.M.; Moreno, E.; Souri, M.K.; Martínez, J.A.; Bueso, M.C.; Monforte, A.J.; Fernández-Trujillo, J.P. Discrimination of climacteric and non-climacteric fruit at harvest and at senescence stage by quality traits. J. Sci. Food Agric. 2009, 89, 1743–1753, doi:10.1002/jsfa.3651.
[8]  Fernández-Trujillo, J.P.; Obando-Ulloa, J.M.; Martínez, J.A.; Moreno, E.; García-Mas, J.; Monforte, A.J. Climacteric or non-climacteric behavior in melon fruit 2. Linking climacteric pattern and main postharvest disorders and decay in a set of near-isogenic lines. Postharvest Biol. Technol. 2008, 50, 125–134, doi:10.1016/j.postharvbio.2008.04.007.
[9]  Moreno, E.; Obando, J.; Dos-Santos, N.; Fernández-Trujillo, J.P.; Monforte, A.J.; Garcia-Mas, J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor. Appl. Genet. 2008, 116, 589–602, doi:10.1007/s00122-007-0694-y.
[10]  Dos-Santos, N.; Jiménez, A.; Rodríguez-Arcos, R.; Fernández-Trujillo, J.P. Cell wall polysaccharides of near-isogenic lines of melon and their inbred parentals which show differential flesh firmness and physiological behaviour. J. Agric. Food Chem. 2011, 59, 7773–7784, doi:10.1021/jf201155a.
[11]  Gomes, H.; Fundo, J.; Obando-Ulloa, J.M.; Almeida, D.P.F.; Fernández-Trujillo, J.P. The genetic background of quality and cell wall changes in fresh-cut melons. Acta Hortic. 2009, 877, 1011–1018.
[12]  Vegas, J.; Garcia-Mas, J.; Monforte, A.J. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor. Appl. Genet. 2013, 126, 1531–1544, doi:10.1007/s00122-013-2071-3.
[13]  Fernández-Trujillo, J.P.; Fernández-Talavera, M.; Ruiz-León, M.T.; Roca, M.J.; Dos-Santos, N. Aroma volatiles during whole melon ripening in a climacteric near-isogenic line and its inbred non-climacteric parents. Acta Hortic. 2012, 934, 951–958.
[14]  Leffingwell, D.; Leffingwell, J.C. Odour and Flavour Threshold Values in Air, Water and Other Media. Available online: http://www.thresholdcompilation.com/ (accessed on 25 July 2013).
[15]  Haz-Map. Available online: http://hazmap.nlm.nih.gov/hazardous-agents (accessed on 25 July 2013).
[16]  Howgate, P. Tainting Potential of Esters of Alkanols and Monobasic Alkanoic Acids. Available online: http://www.cschi.cz/odour/files/world/48_Taining_potential_of_esters_of_alkanols_and_monobasic_alkanoic_acids.pdf (accessed on 25 July 2013).
[17]  Pino, J.; Mesa, J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour Fragance J. 2006, 21, 207–213, doi:10.1002/ffj.1703.
[18]  Nagata, Y. Measurement of Odor Threshold by Triangle Odor Bag Method. Odor Measurement Review. Available online: http://www.env.go.jp/en/air/odor/measure/02_3_2.pdf (accessed on 25 July 2013).
[19]  Schnabel, K.O.; Belitz, H.D.; von Ranson, C. Investigations on the structure-activity relationships of odorous substances. Part 1. Detection thresholds and odour qualities of aliphatic and alicyclic compounds containing oxygen functions. Z. Lebensm. Unters. Forsch. 1988, 187, 215–223, doi:10.1007/BF01043342.
[20]  Rychlik, M.; Schieberle, P.; Grosch, W.; Deutsche Forschungsanstalt fu?r Lebensmittelchemie; Universita?t München; Institut fu?r Lebensmittelchemie der Technischen. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Deutsche Forschungsanstat für Lebensmittelchemie and Instit für Lebensmittelchemie der Technischen Universita?t Mu?nchen: Garching, Germany, 1999.
[21]  Tamura, H.; Padrayuttawat, A.; Tokunaga, T. Seasonal change of volatile compounds of Citrus sudachi during maturation. Food Sci. Technol. Res. 1999, 5, 156–160, doi:10.3136/fstr.5.156.
[22]  El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. Available online: http://www.pherobase.com/ (accessed on 25 July 2013).
[23]  The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/ (accessed on 25 July 2013).
[24]  Acree, T.; Arn, H. Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 25 July 2013).
[25]  Wyllie, S.G.; Leach, D.N.; Wang, Y.M.; Shewfelt, R.L. Sulfur Volatiles in Cucumis-Melo Cv Makdimon (Muskmelon) Aroma—Sensory Evaluation by Gas-Chromatography Olfactometry. In Sulfur Compounds in Foods; Mussinan, C.J., Keelan, M.E., Eds.; American Chemical Society: Washington, DC, USA, 1994; pp. 36–48.
[26]  Selli, S.; Prost, C.; Serot, T. Odour-active and off-odour components in rainbow trout (Oncorhynchus mykiss) extracts obtained by microwave assisted distillation-solvent extraction. Food Chem. 2009, 114, 317–322, doi:10.1016/j.foodchem.2008.09.038.
[27]  Valet, V.; Serot, T.; Cardinal, M.; Knockaert, C.; Prost, C. Olfactometric determination of the most potent odor-active compounds in salmon muscle (Salmo salar) smoked by using four smoke generation techniques. J. Agric. Food Chem. 2007, 55, 4518–4525, doi:10.1021/jf063468f.
[28]  Barletta, J.Y.; de Lima, P.C.F.; Gomes, A.; dos Santos-Neto, A.; Lan?as, F. Development of a new stir bar sorptive extraction coating and its application for the determination of six pesticides in sugarcane juice. J. Sep. Sci. 2011, 34, 1317–1325, doi:10.1002/jssc.201100096.
[29]  Pérez, S.; Farré, M.; Gon?alves, C.; Ace?a, J.; Alpendurada, M.F.; Barceló, D. Green Analytical Chemistry in the Determination of Organic Pollutants in the Environment. In Challenges in Green Analytical Chemistry; de la Guardia, M., Garrigues, S., Eds.; RSC Publishing: Cambridge, UK, 2011; pp. 224–285.
[30]  Pang, X.L.; Guo, X.F.; Qin, Z.H.; Yao, Y.B.; Hu, X.S.; Wu, J.H. Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. J. Agric. Food Chem. 2012, 60, 4179–4185, doi:10.1021/jf300149m.
[31]  Gonda, I.; Bar, E.; Portnoy, V.; Lev, S.; Burger, J.; Schaffer, A.A.; Tadmor, Y.; Gepstein, S.; Giovannoni, J.J.; Katzir, N.; Lewinsohn, E. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J. Exp. Bot. 2010, 61, 1111–1123, doi:10.1093/jxb/erp390.
[32]  Kourkoutas, D.; Elmore, J.S.; Mottram, D.S. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem. 2006, 97, 95–102, doi:10.1016/j.foodchem.2005.03.026.
[33]  Fallik, E.; Alkali-Tuvia, S.; Horev, B.; Copel, A.; Rodov, V.; Aharoni, Y.; Ulrich, D.; Schulz, H. Characterisation of ‘Galia’ melon aroma by GC and mass spectrometric sensor measurements after prolonged storage. Postharvest Biol. Technol. 2001, 22, 85–91, doi:10.1016/S0925-5214(00)00185-X.
[34]  Galaz, S.; Morales-Quintana, L.; Moya-León, M.A.; Herrera, R. Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. FEBS Lett. 2013, 280, 1344–1357.
[35]  Lucchetta, L.; Manríquez, D.; El Sharkawy, I.; Flores, F.B.; Sánchez-Bel, P.; Zouine, M.; Ginies, C.; Bouzayen, M.; Rombaldi, C.; Pech, J.C.; Latché, A. Biochemical and catalytic properties of three recombinant alcohol acyltransferases of melon. Sulfur-containing ester formation, regulatory role of Coa-SH in activity, and sequence elements conferring substrate preference. J. Agric. Food Chem. 2007, 55, 5213–5220, doi:10.1021/jf070210w.
[36]  Shan, W.Y.; Zhao, C.; Fan, J.G.; Cong, H.Z.; Liang, S.C.; Yu, X.Y. Antisense suppression of alcohol acetyltransferase gene in ripening melon fruit alters volatile composition. Sci. Hortic. 2012, 139, 96–101, doi:10.1016/j.scienta.2012.03.010.
[37]  Bauchot, A.D.; Mottram, D.S.; Dodson, A.T.; John, P. Effect of aminocyclopropane-1-carboxylic acid oxidase antisense gene on the formation of volatile esters in Cantaloupe Charentais melon (cv. Védrantais). J. Agric. Food Chem. 1998, 46, 4787–4792, doi:10.1021/jf980692z.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413