全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Foods  2013 

Food Quality Improvement of Soy Milk Made from Short-Time Germinated Soybeans

DOI: 10.3390/foods2020198

Keywords: germination, physicochemical property, phytic acid, soy milk, total phenolic content, trypsin inhibitor activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objectives of this study were to develop soy milk with improved food quality and to enhance the functional attributes by incorporating short-time germination into the processing. Changes in trypsin inhibitor activity (TIA), phytic acid content and total phenolic content (TPC) in soy milk produced from soybeans germinated within 72 h were investigated to determine the optimum germination condition. Results from the present research showed significant ( p < 0.05) improvement of TPC in cooked germinated soybean milk, while both the TIA and phytic acid content were decreased significantly ( p < 0.05). In the subsequent evaluation on the quality attributes under the optimum germination condition, soy milk made from 28 h-germinated soybeans presented enhanced nutritional value and comparable physicochemical properties to conventional soy milk. The current approach provides a feasible and convenient way for soy-based product innovation in both household and industrial settings.

References

[1]  Onuorah, C.E.; Adejare, A.O.; Uhiara, N.S. Comparative physico-chemical evaluation of soy milk and soya cake produced by three different methods. Niger. Food J. 2007, 25, 28–38.
[2]  Zieliński, H. Contribution of low molecular weight antioxidants to the antioxidant screen of germinated soybean seeds. Plant Foods Hum. Nutr. 2003, 58, 1–20, doi:10.1023/B:QUAL.0000041165.28475.8f.
[3]  Kaushik, G.; Naik, S.N.; Satya, S. Effect of domestic processing techniques on the mineral content in soybean. Asian J. Chem. 2010, 22, 5159–5164.
[4]  Martinez, A.P.C.; Martinesz, P.C.C.; Souza, M.C.; Canniatti-Brazaca, S.G. Chemical change in soybean grains with germination. Cienc. Tecnol. Aliment. 2011, 31, 23–30, doi:10.1590/S0101-20612011000100004.
[5]  Sattar, A.; Akhtar, M.A. Irradiation and germination effects on phytate, protein and amino acids of soybean. Plant Foods Hum. Nutr. 1990, 40, 185–194, doi:10.1007/BF01104141.
[6]  Paucar-Menacho, L.M.; Berhow, M.A.; Mandarino, J.M.G.; Chang, Y.K.; Mejia, E. Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Res. Int. 2010, 43, 1856–1865, doi:10.1016/j.foodres.2009.09.016.
[7]  Liu, Z.S.; Chang, S.K.C. Nutritional profile and physiochemical properties of commercial soy milk. J. Food Proc. Preserv. 2012, doi:10.1111/j.1745-4549.2012.00696.x.
[8]  China National Standardization Committee of Light Industry. In Plant Protein Beverage—Soymilk and Soy Drink, QB/T 2132–2008; China Light Industry Press: Beijing, China, 2008.
[9]  Xu, B.J.; Chang, S.K.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, S159–S166, doi:10.1111/j.1750-3841.2006.00260.x.
[10]  Gao, Y.; Shang, M.A.; Maroof, S.; Biyashev, R.M.; Grabau, E.A.; Kwanyuen, P.; Burton, J.W.; Buss, G.R. A modified colorimetric method for phytic acid analysis in soybean. Crop Sci. 2007, 47, 1797–1803, doi:10.2135/cropsci2007.03.0122.
[11]  Hamerstrand, G.E.; Black, L.T.; Glover, J.D. Trypsin inhibitors in soy products: Modification of the standard analytical procedure. Cereal Chem. 1981, 58, 42–45.
[12]  Randhir, R.; Lin, Y.T.; Shetty, K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Proc. Biochem. 2004, 39, 637–647, doi:10.1016/S0032-9592(03)00197-3.
[13]  Lin, P.Y.; Lai, H.M. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem. 2006, 54, 3807–3814, doi:10.1021/jf060002o.
[14]  Xu, B.J.; Chang, S.K.C. Isoflavones, Flavan-3-ols, phenolic acids, total phenolic profiles, and antioxidant capacities of soy milk as affected by ultrahigh-temperature and traditional processing methods. J. Agric. Food Chem. 2009, 57, 4706–4717, doi:10.1021/jf900687j.
[15]  Randhir, R.; Kwon, Y.I.; Lin, Y.T.; Shetty, K. Effect of thermal processing on the phenolic associated health-relevant functionality of selected legume sprouts and seedlings. J. Food Biochem. 2009, 33, 89–112, doi:10.1111/j.1745-4514.2008.00210.x.
[16]  Shamsuddin, A.M. Anti-cancer function of phytic acid. Int. J. Food Sci. Technol. 2002, 37, 769–782, doi:10.1046/j.1365-2621.2002.00620.x.
[17]  Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959, doi:10.1016/j.foodchem.2009.11.052.
[18]  Rasha, M.K.; Abou-Arab, E.A.; Gibriel, A.Y.; Rasmy, N.M.H.; Abu-Salem, F.M. Effect of legume processing treatments individually or in combination on their phytic acid content. Afr. J. Food Sci. Technol. 2011, 2, 36–46.
[19]  Rouhana, A.; Adler-Nissen, J.; Cogan, U.; Fr?ki?r, H. Heat inactivation kinetics of trypsin inhibitors during high temperature-short time processing of soy milk. J. Food Sci. 1996, 61, 256–269.
[20]  Yuan, S.; Chang, S.K.C.; Liu, Z.; Xu, B.J. Elimination of trypsin inhibitor activity and beany flavor in soy milk by consecutive blanching and ultrahigh-temperature (UHT) processing. J. Agric. Food Chem. 2008, 56, 7957–7963, doi:10.1021/jf801039h.
[21]  Hackler, L.R.; van Buren, J.P.; Steinkraus, K.H.; EI Rawi, I.; Hand, D.B. Effect of heat treatment on nutritive value of soy milk protein fed to weanling rats. J. Food Sci. 1965, 30, 723–728, doi:10.1111/j.1365-2621.1965.tb01831.x.
[22]  Kwok, K.C.; Shiu, W.W.; Yeung, C.H.; Niranjan, K. Effect of thermal processing on available lysine, thiamine and riboflavin content in soy milk. J. Sci. Food Agric. 1998, 77, 473–478, doi:10.1002/(SICI)1097-0010(199808)77:4<473::AID-JSFA65>3.0.CO;2-S.
[23]  Sugawara, M.; Ito, D.; Yamamoto, K.; Akita, M.; Oguri, S.; Momonoki, Y.S. Kunitz soybean trypsin inhibitor is modified at its C-terminus by novel soybean thiol protease (protease T1). Plant Prod. Sci. 2007, 10, 314–321, doi:10.1626/pps.10.314.
[24]  McGrain, A.K.; Chen, J.C.; Wilson, K.A.; Tan-Wilson, A.L. Proteolytic activities degrading the Bowman-Birk trypsin inhibitors during soybean germination. Phytochemistry 1989, 28, 1013–1017, doi:10.1016/0031-9422(89)80174-8.
[25]  Kumar, V.; Rani, A.; Pandey, V.; Chauhan, G.S. Changes in lipoxygenase isozymes and trypsin inhibitor activity in soybean during germination at different temperatures. Food Chem. 2006, 99, 563–568, doi:10.1016/j.foodchem.2005.08.024.
[26]  Wilson, K.A. The release of proteinase inhibitors from legume seeds during germination. Phytochemistry 1980, 19, 2517–2519, doi:10.1016/S0031-9422(00)83909-6.
[27]  Momonoki, Y.S.; Sugawara, M.; Watanabe, T. Change in activity of soybean trypsin inhibitor by removed of C-terminal amino acid residues during seed germination. Plant Prod. Sci. 2002, 5, 51–57, doi:10.1626/pps.5.51.
[28]  Chauhan, O.P.; Chauhan, G.S. Development of anti-nutrients free soy beverage using germinated soybean. J. Food Sci. Technol. 2007, 44, 62–65.
[29]  Liu, Z.S.; Chang, S.K.C. Effect of soy milk characteristics and cooking conditions on coagulant requirements for making filled tofu. J. Agric. Food Chem. 2004, 52, 3405–3411, doi:10.1021/jf035139i.
[30]  Harjai, N.; Singh, G. Evaluation of different soybean varieties for manufacture of soy milk. Int. J. Food Sci.Technol. Nutr. 2007, 2, 71–77.
[31]  Mostafa, M.M.; Rahma, E.H.; Rady, A.H. Chemical and nutritional changes in soybean during germination. Food Chem. 1987, 23, 257–265, doi:10.1016/0308-8146(87)90113-0.
[32]  Liu, Z.S.; Chang, S.K.C. Soy milk viscosity as influenced by heating methods and soybean varieties. J. Food Proc. Preserv. 2007, 31, 320–333, doi:10.1111/j.1745-4549.2007.00128.x.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133