Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA) bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air) on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C) and air flow (7–20 L/h) range. Oil stability index (Rancimat method) was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow). It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.
References
[1]
Pariza, M.W.; Ashoor, S.H.; Chu, F.S.; Lund, D.B. Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Lett. 1979, 7, 63–69, doi:10.1016/S0304-3835(79)80097-X.
[2]
Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513, doi:10.1080/10408398.2010.501409.
Pajunen, T.I. Autoxidation of Conjugated Linoleic Acid Methyl Ester in the Presence of α-Tocopherol: The Hydroperoxide Pathway; University of Helsinki: Helsinki, Finland, 2009; p. 66.
[5]
Yettella, R.R.; Castrodale, C.; Proctor, A. Oxidative stability of conjugated linoleic acid rich soy oil. J. Am. Oil Chem. Soc. 2012, 89, 685–693, doi:10.1007/s11746-011-1962-1.
Yurawecz, M.P.; Hood, J.K.; Mossoba, M.M.; Roach, J.A.; Ku, Y. Furan fatty acids determined as oxidation products of conjugated octadecadienoic acid. Lipids 1995, 30, 595–598, doi:10.1007/BF02536995.
[8]
Suzuki, R.; Abe, M; Miyashita, K. Comparative study of the autoxidation of TAG containing conjugated and nonconjugated C18 PUFA. J. Am. Oil Chem. Soc. 2004, 81, 563–569, doi:10.1007/s11746-006-0942-3.
[9]
Giua, L.; Blasi, F.; Simonetti, M.S.; Cossignani, L. Oxidative modifications of conjugated and unconjugated linoleic acid during heating. Food Chem. 2013, 140, 680–685, doi:10.1016/j.foodchem.2012.09.067.
[10]
Arranz, S.; Cert, R.; Pérez-Jiménez, J.; Cert, A.; Saura-Calixto, F. Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chem. 2008, 110, 985–990, doi:10.1016/j.foodchem.2008.03.021.
Chen, J.F.; Tai, C.-Y.; Chen, Y.C.; Chen, B.H. Effects of conjugated linoleic acid on the degradation and oxidation stability of model lipids during heating and illumination. Food Chem. 2001, 72, 199–206, doi:10.1016/S0308-8146(00)00219-3.
Farhoosh, R.; Niazmand, R.; Rezaei, M.; Sarabi, M. Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur. J. Lipid Sci. Technol. 2008, 110, 587–592, doi:10.1002/ejlt.200800004.
[15]
Brimberg, U.I.; Kamal-Eldin, A. On the kinetics of the autoxidation of fats: Substrates with conjugated double bonds. Eur. J. Lipid Sci. Technol. 2003, 105, 17–22, doi:10.1002/ejlt.200390000.