全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Foods  2013 

Lignan Content in Cereals, Buckwheat and Derived Foods

DOI: 10.3390/foods2010053

Keywords: lignans, cereal grains, cereal based foods, buckwheat, database

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cereal foods are a fundamental part of a balanced diet and several studies have assigned to wholemeal cereal products a protective role in human health, due to their content of bioactive compounds. Within the phytochemicals, lignans are of increasing interest for their potential anticarcinogenic, antioxidant, estrogenic and antiestrogenic activities. The aim of this work is to contribute to the updating of food lignan databases by providing the profile and the amount of lignans in cereals, buckwheat and several cereal based foods commonly consumed in human diets. Values were taken from published papers. Items were divided in different groups, namely grains, brans and flours, bread, cereal staple foods, breakfast cereals and other cereal products, and values for secoisolariciresinol, matairesinol, pinoresinol, lariciresinol are given. For example, the total average values for the mentioned lignans in grains ranged between 23 μg/100 g and 401 μg/100 g dry weight. The contribution of each single lignan molecule to the total value of lignans appears to be different for every cereal species. Lignan content and typology in processed foods depends on the raw materials used, their degree of refinement and on processing conditions.

References

[1]  Bertram, H.C.; Bach Knudsen, K.E.; Serena, A.; Malmendal, A.; Nielsen, N.C.; Fretté, X.C.; Andersen, H.J. NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread. Br. J. Nutr. 2006, 95, 955–962, doi:10.1079/BJN20061761.
[2]  Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525, doi:10.1080/10408360701612942.
[3]  Miur, A.D. Flax lignans: New opportunities for functional foods. Food Sci. Technol. Bull. Funct. Foods 2010, 6, 61–79, doi:10.1616/1476-2137.15817.
[4]  Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603, doi:10.1111/j.1753-4887.2010.00319.x.
[5]  Ayres, D.C.; Loike, J.D. Lignans Chemical, Biological and Clinical Properties. In Chemistry & Pharmacology of Natural Products; Phillipson, J.D., Ayres, D.C., Baxter, H., Eds.; Cambridge University Press: Cambridge, UK, 1990; p. 402.
[6]  Mazur, W.M.; Adlercreutz, H. Natural and anthropogenic environmental estrogens: The scientific basis for risk assessment; naturally occurring estrogens in food. Pure Appl. Chem. 1998, 70, 1759–1776, doi:10.1351/pac199870091759.
[7]  Imai, T.; Nomura, M.; Fukushima, K. Evidence for involvement of the phenylpropanoid pathway in the biosynthesis of the norlignan agatharesinol. J. Plant Physiol. 2006, 163, 483–487, doi:10.1016/j.jplph.2005.08.009.
[8]  Hemmati, S.; Heimendahl, C.B.; Klaes, M.; Alfermann, A.W.; Schmidt, T.J.; Fuss, E. Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med. 2010, 76, 928–934, doi:10.1055/s-0030-1250036.
[9]  Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev. 2003, 2, 371–390, doi:10.1023/B:PHYT.0000045487.02836.32.
[10]  Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716, doi:10.1039/b514045p.
[11]  Milder, I.E.; Arts, I.C.; van de Putte, B.; Venema, D.P.; Hollman, P.C. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br. J. Nutr. 2005, 93, 393–402, doi:10.1079/BJN20051371.
[12]  Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans and coumestan. Nutr. Cancer 2006, 54, 184–201, doi:10.1207/s15327914nc5402_5.
[13]  Smeds, A.I.; Eklund, P.C.; Sj?holm, R.E.; Willf?r, S.M.; Nishibe, S.; Deyama, T.; Holmbomet, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 2007, 55, 1337–1346, doi:10.1021/jf0629134.
[14]  Smeds, A.I.; Jauhiainen, L.; Tuomola, E.; Peltonen-Sainio, P. Characterization of variation in the lignan content and composition of winter rye, spring wheat and spring oat. J. Agric. Food Chem. 2009, 57, 5837–5842, doi:10.1021/jf9004274.
[15]  Pe?alvo, J.L.; Haajanen, K.M.; Botting, N.; Adlercreutz, H. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. J. Agric. Food Chem. 2005, 53, 9342–9347, doi:10.1021/jf051488w.
[16]  Pe?alvo, J.L.; Adlercreutz, H.; Uehara, M.; Ristimaki, A.; Watanabe, S. Lignan content of selected foods from Japan. J. Agric. Food Chem. 2008, 56, 401–409.
[17]  Thompson, L.U.; Robb, P.; Serraino, M.; Cheung, F. Mammalian lignan production from various foods. Nutr. Cancer 1991, 16, 43–52, doi:10.1080/01635589109514139.
[18]  Mazur, W. Phytoestrogen content in foods. Baillieres Clin. Endocrinol. Metab. 1998, 12, 729–742, doi:10.1016/S0950-351X(98)80013-X.
[19]  Muir, A.D.; Westcott, N.D. Flaxseed Constituents and Human Health. In Flax: the Genus Linum; Muir, A.D., Westcott, N.D., Eds.; Taylor & Francis: London, UK, 2003; pp. 243–251.
[20]  Holmbom, B.; Eckerman, C.; Eklund, P.; Hemming, J.; Nisula, L.; Reunanen, M.; Sj?holm, R.; Sundberg, A.; Sundberg, K.; Willf?r, S. Knots in trees—A new rich source of lignans. Phytochem. Rev. 2003, 2, 331–340, doi:10.1023/B:PHYT.0000045493.95074.a8.
[21]  Axelson, M.; Sj?vall, J.; Gustafsson, B.E.; Setchell, K.D.R. Origin of lignans in mammals and identification of a precursor from plants. Nature 1982, 298, 659–660, doi:10.1038/298659a0.
[22]  Borriello, S.P.; Setchell, K.D.R.; Axelson, M.; Lawson, A.M.J. Production and metabolism of lignans by the human faecal flora. Appl. Bacteriol. 1985, 58, 37–43, doi:10.1111/j.1365-2672.1985.tb01427.x.
[23]  Setchell, K.D.R.; Adlercreutz, H. Mammalian Lignans and Phytoestrogens: Recent Studies on Their Formation, Metabolism and Biological Role in Health and Disease. In Role of Gut Flora in Toxicity and Cancer; Rowland, I.?R., Ed.; Academic Press: San Diego, CA, USA, 1988; pp. 315–345.
[24]  Rowland, I.; Wiseman, H.; Sanders, T.; Adlercreutz, H.; Bowey, E. Interindividual variation in metabolism of isoflavonoids and lignans: The role of the gut microflora and habitual diet. Nutr. Cancer 2000, 36, 27–32, doi:10.1207/S15327914NC3601_5.
[25]  Heinonen, S.; Nurmi, T.; Liukkonen, K.; Poutanen, K.; W?h?l?, K.; Deyama, T.; Nishibe, S.; Adlercreutz, H. In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 2001, 49, 3178–3186, doi:10.1021/jf010038a.
[26]  Pen?lvo, J.L.; Nurmi, T.; Haajanen, K.; Al-Maharik, N.; Botting, N.; Adlercreutz, H. Determination of lignans in human plasma by liquid chromatography with coulometric electrode array detection. Anal. Biochem. 2004, 332, 384–393, doi:10.1016/j.ab.2004.05.046.
[27]  Webb, A.L.; McCullough, M.L. Dietary lignans: Potential role in cancer prevention. Nutr. Cancer 2005, 51, 117–131, doi:10.1207/s15327914nc5102_1.
[28]  Bergman Jungestrom, M.; Thompson, L.U.; Dabrosin, C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin. Cancer Res. 2007, 13, 1061–1067, doi:10.1158/1078-0432.CCR-06-1651.
[29]  Saarinen, N.M.; Warri, A.; Airio, M.; Smeds, A.; Makela, S. Role of dietary lignans in the reduction of breast cancer risk. Mol. Nutr. Food Res. 2007, 51, 857–866, doi:10.1002/mnfr.200600240.
[30]  Bloedon, L.T.; Balikai, S.; Chittams, J.; Cunnane, S.C.; Berlin, J.A.; Rader, D.J.; Szapary, P.O. Flaxseed and cardiovascular risk factors: Results from a double blind, randomized, controlled clinical trial. J. Am. Coll. Nutr. 2008, 27, 65–74.
[31]  Prasad, K. Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 2009, 54, 369–377, doi:10.1097/FJC.0b013e3181af04e5.
[32]  Velentzis, L.S.; Cantwell, M.M.; Cardwell, C.; Keshtgar, M.R.; Leathem, A.J.; Woodside, J.V. Lignans and breast cancer risk in pre- and post-menopausal women: Meta-analyses of observational srudies. Br. J. Cancer 2009, 100, 1492–1498, doi:10.1038/sj.bjc.6605003.
[33]  Adolphe, J.L.; Whiting, S.J.; Juurlink, B.H.; Thorpe, L.U.; Alcorn, J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br. J. Nutr. 2010, 103, 929–938, doi:10.1017/S0007114509992753.
[34]  Saarinen, N.M.; Tuominen, J.; Pylkk?nen, L.; Santti, R. Assessment of information to substantiate a health claim on the prevention of prostate cancer by lignans. Nutrients 2010, 2, 99–115, doi:10.3390/nu2020099.
[35]  Buck, K.; Zaineddin, A.K.; Vrieling, A.; Linseisen, J.; Chang-Claude, J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am. J. Clin. Nutr. 2010, 92, 141–153, doi:10.3945/ajcn.2009.28573.
[36]  Buck, K.; Vrieling, A.; Zaineddin, A.K.; Becker, S.; Hüsing, A.; Kaaks, R.; Linseisen, J.; Flesch-Janys, D.; Chang-Claude, J. Serum enterolactone and prognosis of postmenopausal breast cancer. J. Clin. Oncol. 2011, 29, 3730–3738.
[37]  Ward, H.A.; Kuhnle, G.G.; Mulligan, A.A.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T. Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am. J. Clin. Nutr. 2010, 91, 440–448, doi:10.3945/ajcn.2009.28282.
[38]  Blitz, C.L.; Murphy, S.P.; Au, D.L.M. Adding lignan values to a food composition database. J. Food Comp. Anal. 2007, 20, 99–105, doi:10.1016/j.jfca.2006.05.006.
[39]  Scalbert, A.; Andres-Lacueva, C.; Arita, M.; Kroon, P.; Manach, C.; Urpi-Sarda, M.; Wishart, D. Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem. 2011, 59, 4331–4348.
[40]  Durazzo, A.; Raguzzini, A.; Azzini, E.; Foddai, M.S.; Narducci, V.; Maiani, G.; Carcea, M. Bioactive molecules in cereals. Tecnica Molitoria Int. 2009, 60, 150–162.
[41]  Durazzo, A.; Azzini, E.; Raguzzini, A.; Maiani, G.; Finocchiaro, F.; Ferrari, B.; Gianinetti, A.; Carcea, M. Influence of processing on the lignans content of cereal based foods. Tecnica Molitoria Int. 2009, 60, 163–173.
[42]  Moreno-Franco, B.; Garcia-Gonzalez, A.; Montero-Bravo, A.M.; Iglesias-Gitierrez, E.; Ubeda, N.; Maroto-Nunez, L.; Adlercreutz, H.; Pen?lvo, J. Dietary alkylresorcinols and lignans in the spanish diet: Development of the Alignia database. J. Agric. Food Chem. 2011, 59, 9827–9834.
[43]  Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G. Carcea M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2012. in press.
[44]  Mazur, W.; Fotsis, T.; Wahala, K.; Ojala, S.; Salakka, A.; Adlercreutz, H. Isotope diluition gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Anal. Biochem. 1996, 233, 169–180, doi:10.1006/abio.1996.0025.
[45]  Horn-Ross, P.L.; Barnes, S.; Lee, M.; Coward, L.; Mandel, J.E., Koo; John, E.M.; Smith, M. Assessing phytoestrogen exposure in epidemiologic studies: Development of a database (United States). Cancer Causes Control 2000, 11, 289–298.
[46]  Amarowicz, R.; Carle, R.; Dongowski, G.; Durazzo, A.; Galena, R.; Kammerer, D.; Maiani, G.; Piskula, M.K. Influence of postharvest processing and storage influences on phenolic acids and flavonoid in foods. Mol. Nutr. Food Res. 2009, 53, S151–S183, doi:10.1002/mnfr.200700486.
[47]  Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western diseases. Ann. Med. 1997, 29, 95–120.
[48]  Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173, doi:10.1016/j.foodres.2005.05.002.
[49]  Muir, A.D.; Westcott, N.D. Quantitation of the lignan secoisolariciresinol diglucoside in baked goods containing flax seed or flax meal. J. Agric. Food Chem. 2000, 48, 4048–4052, doi:10.1021/jf990922p.
[50]  Simbalista, R.L.; Frota, K.; Soares, R.A.M.; Arêas, J.A.G. Effect of storage and processing of Brazilian flaxseed on lipid and lignan contents. Ciênc. Tecnol. Aliment. 2012, 32, 374–380.
[51]  Krishnan, M.; Prabhasankar, P. Health based pasta: Redefining the concept of the next generation convenience food. Crit. Rev. Food Sci. Nutr. 2012, 52, 9–20, doi:10.1080/10408398.2010.486909.
[52]  AIDEPI. Available online: www.aidepi.it (accessed on 31 January 2013).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133