The main goal of this exploratory project was to quantify seedling density in post fire regeneration sites, with the following objectives: to evaluate the application of second order image texture (SOIT) in image segmentation, and to apply the object-based image analysis (OBIA) approach to develop a hierarchical classification. With the utilization of image texture we successfully developed a methodology to classify hyperspatial (high-spatial) imagery to fine detail level of tree crowns, shadows and understory, while still allowing discrimination between density classes and mature forest versus burn classes. At the most detailed hierarchical Level I classification accuracies reached 78.8%, a Level II stand density classification produced accuracies of 89.1% and the same accuracy was achieved by the coarse general classification at Level III. Our interpretation of these results suggests hyperspatial imagery can be applied to post-fire forest density and regeneration mapping.
References
[1]
Romme, W.H.; Despain, D.G. On historical perspective fires of 1988 Yellowstone comparable. Perspective 2011, 39, 695–699.
[2]
Romme, W.H.; Boyce, M.S.; Gresswell, R.; Merrill, E.H.; Minshall, G.W.; Whitlock, C.; Turner, M.G. Twenty years after the 1988 Yellowstone Fires: Lessons about disturbance and ecosystems. Ecosystems 2011, 14, 1196–1215, doi:10.1007/s10021-011-9470-6.
Moskal, L.M.; Dunbar, M.; Jakubauskas, M.E. Visualizing the forest: a forest inventory characterization in the Yellowstone National Park based on geostatistical models. In A Message From the Tatras: Geographical Information Systems & Remote Sensing in Mountain Environmental Research; Widacki, W., Bytnerowicz, A., Riebau, A., Eds.; Institute of Geography & Spatial Management, Jagiellonian University: Krakow, Poland, 2004; pp. 219–232.
[5]
Turner, M.G.; Romme, W.H.; Tinker, D.B. Surprises and lessons from the 1988 Yellowstone fires In a nutshell. Front. Ecol. Environ. 2003, 1, 351–358, doi:10.1890/1540-9295(2003)001[0351:SALFTY]2.0.CO;2.
[6]
Merrill, E.H.; Bramble-brodahl, M.K.; Marrs, R.W.; Boyce, M.S. Estimation of green herbaceous phytomass from Landsat MSS data in Yellowstone National Park. J. Range Manag. 1993, 46, 151–157, doi:10.2307/4002273.
[7]
Wambolt, C.L.; Rens, R.J. Elk and fire impacts on mountain big sagebrush range in Yellowstone. Nat. Resour. Environ. Issues. 2011, 16, 1–6.
[8]
Forester, J.D.; Anderson, D.P.; Turner, M.G. Do high-density patches of coarse wood and regenerating saplings create browsing refugia for aspen (Populus tremuloides Michx.) in Yellowstone National Park (USA)? For. Ecol. Manag. 2007, 253, 211–219, doi:10.1016/j.foreco.2007.07.019.
[9]
Wulder, M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr. 1998, 22, 449–476.
[10]
Wang, J.; Sammis, T.W.; Gutschick, V.P.; Gebremichael, M.; Dennis, S.O.; Harrison, R.E. Review of satellite remote sensing use in forest health studies. Open Geogr. J. 2010, 3, 28–42, doi:10.2174/1874923201003010028.
[11]
Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166, doi:10.1006/jema.1998.0255.
[12]
Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Science 1990, 26, 1–26.
[13]
Hyyppa, H.; Inkinen, M.; Engdahl, M. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Science 2000, 128, 109–120.
[14]
Miller, J.D.; Yool, S.R. Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sens. Environ. 2002, 82, 481–496, doi:10.1016/S0034-4257(02)00071-8.
[15]
Kashian, D.M.; Tinker, D.B.; Turner, M.G.; Scarpace, F.L. Spatial heterogeneity of lodgepole pine sapling densities following the 1988 fires in Yellowstone National Park, Wyoming , USA. Can. J. For. Res. 2004, 34, 2263–2276, doi:10.1139/x04-107.
[16]
Chambers, J.Q.; Asner, G.P.; Morton, D.C.; Anderson, L.O.; Saatchi, S.S.; Espírito-Santo, F.D.B.; Palace, M.; Souza, C. Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends Ecol. Evol. 2007, 22, 414–423, doi:10.1016/j.tree.2007.05.001.
[17]
Moskal, L.M.; Styers, D.M.; Halabisky, M. Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data. Remote Sens. 2011, 3, 2243–2262, doi:10.3390/rs3102243.
[18]
Platt, R.V.; Rapoza, L. An evaluation of an object-oriented paradigm for land use/land cover classification. Prof. Geogr. 2008, 60, 87–100, doi:10.1080/00330120701724152.
[19]
Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16, doi:10.1016/j.isprsjprs.2009.06.004.
[20]
Townshend, J.R.G.; Huang, C.; Kalluri, S.N.V.; Defries, R.S.; Liang, S.; Yang, K. Beware of per-pixel characterization of land cover. Intern. J. Remote Sens. 2000, 21, 839–843, doi:10.1080/014311600210641.
[21]
Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161, doi:10.1016/j.rse.2010.12.017.
[22]
Cleve, C.; Kelly, M.; Kearns, F.; Mortiz, M. Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317–326, doi:10.1016/j.compenvurbsys.2007.10.001.
[23]
Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16, doi:10.1016/j.isprsjprs.2009.06.004.
[24]
Newman, M.E.; McLaren, K.P.; Wilson, B.S. Comparing the effects of classification techniques on landscape-level assessments: pixel-based versus object-based classification. Intern. J. Remote Sens. 2011, 32, 4055–4073, doi:10.1080/01431161.2010.484432.
[25]
Franks, S. Monitoring forest regrowth following large scale fire using satellite data-A case study of Yellowstone National Park, USA. Eur. J. Remote Sens. 2013, 46, 551–569, doi:10.5721/EuJRS20134632.
[26]
Huang, S.; Crabtree, R.L.; Potter, C.; Gross, P. Estimating the quantity and quality of coarse woody debris in Yellowstone post-fire forest ecosystem from fusion of SAR and optical data. Remote Sens. Environ. 2009, 113, 1926–1938, doi:10.1016/j.rse.2009.05.001.
[27]
Fu, G.; Zhao, H.; Li, C.; Shi, L. Segmentation for high-resolution optical remote sensing imagery using improved quadtree and region adjacency graph technique. Remote Sens. 2013, 5, 3259–3279, doi:10.3390/rs5073259.
[28]
Polychronaki, A.; Gitas, I.Z. Burned area mapping in greece using spot-4 hrvir images and object-based image analysis. Remote Sens. 2012, 4, 424–438, doi:10.3390/rs4020424.
[29]
Mitri, G.H.; Gitas, I.Z. Mapping the severity of fire using object-based classification of IKONOS imagery. Intern. J. Wildland Fire 2008, 17, 431–442, doi:10.1071/WF07103.
[30]
Potter, C.; Li, S.; Huang, S.; Crabtree, R.L. Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data. Remote Sens. Environ. 2012, 121, 61–68, doi:10.1016/j.rse.2012.01.019.
[31]
Mitri, G.H.; Gitas, I.Z. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery. Intern. J. Appl. Earth Observ. Geoinform. 2013, 20, 60–66, doi:10.1016/j.jag.2011.09.001.
[32]
Haralick, R.M.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621, doi:10.1109/TSMC.1973.4309314.
Weszka, J.S.; Dyer, C.R.; Rosenfeld, A. A comparative study of texture measures for terrain classification. Comp. General Pharm. 1976, I, 41–46.
[35]
Carr, J.R.; de Miranda, F.P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1945–1952, doi:10.1109/36.729366.
[36]
Wulder, M.A.; LeDrew, E.F.; Franklin, S.E.; Lavigne, M.B. Aerial image texture information in the estimation of northern deciduous and mixed wood forest Leaf Area Index (LAI). Remote Sens. Environ. 1998, 64, 64–76, doi:10.1016/S0034-4257(97)00169-7.
[37]
Wulder, M.A.; White, J.C.; Fournier, R.A.; Luther, J.E.; Magnussen, S. Spatially explicit large area biomass estimation: Three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 2008, 8, 529–560, doi:10.3390/s8010529.
[38]
Franklin, S.E.; McCaffrey, T.M.; Lavigne, M.B.; Wulder, M.A.; Moskal, L.M. An ARC/INFO Macro Language (AML) polygon update program (PUP) integrating forest inventory and remotely-sensed data. Can. J. Remote Sens. 2000, 26, 566–575.
[39]
Moskal, L.M.; Franklin, S.E. Relationship between airborne multispectral image texture and aspen defoliation. Intern. J. Remote Sens. 2004, 25, 2701–2711, doi:10.1080/01431160310001642304.
[40]
Moskal, L.M.; Franklin, S.E. Multi-layer forest stand discrimination with multiscale texture from high spatial detail airborne imagery. Geocarto Intern. 2004, 17, 53–65.
[41]
Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sens. Environ. 2004, 91, 432–440, doi:10.1016/j.rse.2004.04.005.
[42]
Kim, M.; Madden, M.; Warner, T.A. Forest type mapping using object-specific texture measures from multispectral ikonos imagery: Segmentation quality and image classification issues. Photogramm. Eng. Remote Sens. 2009, 75, 819–829.
[43]
Turner, M.G.; Romme, W.H.; Gardner, R.H.; Hargrove, W.W. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol.l Monogr. 1997, 67, 411–433, doi:10.1890/0012-9615(1997)067[0411:EOFSAP]2.0.CO;2.
[44]
Zhang, C.; Franklin, S.; Wulder, M. Geostatistical and texture analysis of airborne-acquired images used in forest classification. Intern. J. Remote Sens. 2004, 25, 859–865, doi:10.1080/01431160310001618059.
[45]
Franklin, S.E.; Hall, R.J.; Moskal, L.M. Incorporating texture into classification of forest species composition from airborne multispectral images. Intern. J. Remote Sens. 2000, 21, 61–79, doi:10.1080/014311600210993.
[46]
Turner, M.G.; Tinker, D.B.; Romme, W.H.; Kashian, D.M.; Litton, C.M. Landscape patterns of sapling density, leaf area, and aboveground net primary production in postfire lodgepole pine forests, Yellowstone National Park (USA). Ecosystems 2004, 7, 751–775, doi:10.1007/s10021-004-0011-4.
[47]
Halabisky, M.; Moskal, L.M.; Hall, S.A. Object-based classification of semi-arid wetlands. J. Appl. Remote Sens. 2011, 5, 053511, doi:10.1117/1.3563569.
[48]
Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctnes in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74.
[49]
Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009; p. 183.
[50]
Kokaly, R.F.; Despain, D.G.; Clark, R.N.; Livo, K.E. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sens. Environ. 2003, 84, 437–456, doi:10.1016/S0034-4257(02)00133-5.
[51]
Albrecht, F.; Lang, S. Spatial accuracy assessment of object boundaries for object-based image analysis. In Proceedings of GEOBIA 2010-Geographic Object-Based Image Analysis, Ghent University, Ghent, Belgium, 29 June–2 July 2010; Addink, E.A., van Coillie, F.M.B., Eds.; Volume XXXVIII-4/C7.
Tíscar, P.A.; Linares, J.C. Structure and regeneration patterns of Pinus nigra subsp. salzmannii natural forests: A basic knowledge for adaptive management in a changing climate. Forests 2011, 2, 1013–1030, doi:10.3390/f2041013.