Traditional uneven-aged forest management seeks a balance between equilibrium stand structure and economic profitability, which often leads to harvesting strategies concentrated in the larger diameter classes. The sustainability (i.e., population persistence over time) and influence of such economically optimal strategies on the equilibrium position of a stand (given by the stable diameter distribution) have not been sufficiently investigated in prior forest literature. This article therefore proposes a discrete optimal control model to analyze the sustainability and stability of the economically optimal harvesting strategies of uneven-aged Pinus nigra stands. For this model, we rely on an objective function that integrates financial data of harvesting operations with a projection matrix model that can describe the population dynamics. The model solution reveals the optimal management schedules for a wide variety of scenarios. To measure the distance between the stable diameter distribution and the economically optimal harvesting strategy distribution, the model uses Keyfitz’s delta, which returns high values for all the scenarios and, thus, suggests that those economically optimal harvesting strategies have an unstabilizing influence on the equilibrium positions. Moreover, the economically optimal harvesting strategies were unsustainable for all the scenarios.
References
[1]
Buongiorno, J.; Michie, B.R. A matrix model of uneven-aged forest management. For. Sci. 1980, 26, 609–625.
[2]
Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed. ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2001; p. 713.
[3]
Picard, N.; Ouédraogo, D.; Bar-Hen, A. Choosing classes for size projection matrix models. Ecol. Model 2010, 221, 2270–2279, doi:10.1016/j.ecolmodel.2010.06.010.
[4]
Escalante, E.; Pando, V.; Ordo?ez, C.; Bravo, F. Multinomial logit estimation of a diameter growth matrix model of two Mediterranean pine species in Spain. Ann. For. Sci. 2011, 68, 715–726, doi:10.1007/s13595-011-0088-9.
[5]
Gotelli, N.J. A Primer of Ecology; Sinauer Associates Inc.: Sunderland, MA, USA, 2001; p. 265.
[6]
Schütz, J.P. Modelling the demographic sustainability of pure beech plenter forests in Eastern Germany. Ann. For. Sci. 2006, 63, 93–100, doi:10.1051/forest:2005101.
[7]
López, I.; Ortu?o, S.F.; Martín, A.J.; Fullana, C. Estimating the sustainable harvesting and the stable diameter distribution of European beech with projection matrix models. Ann. For. Sci. 2007, 64, 593–599, doi:10.1051/forest:2007037.
[8]
López, I.; Fullana, C.; Ortu?o, S.F.; Martín, A.J. Choosing Fagus sylvatica L. matrix model dimension by sensitivity analysis of the population growth rate with respect to the width of the diameter classes. Ecol. Model 2008, 218, 307–314, doi:10.1016/j.ecolmodel.2008.07.007.
[9]
López, I.; Ortu?o, S.; García, F.; Fullana, C. Is De Liocourt’s distribution stable? Forest Sci. 2012, 58, 34–46, doi:10.5849/forsci.10-015.
[10]
Haight, R.G. A comparison of dynamic and static economic models of uneven-aged stand management. Forest Sci. 1985, 31, 957–974.
[11]
Sethi, S.P.; Thompson, G.L. Optimal Control Theory: Applications to Management Science and Economics, 2nd ed. ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
[12]
Kronrad, G.D.; Huang, C.H. Financially optimal thinning and final harvest schedules for loblolly pine plantations on nonindustrial private forestland in east Texas. South J. Appl. For. 2002, 26, 13–17.
[13]
Tahvonen, O. Optimal harvesting of forest age classes: A survey of some recent results. Math Popul. Stud. 2004, 11, 205–232, doi:10.1080/08898480490513616.
[14]
López, I.; Ortu?o, S.; Martín, A.J.; Fullana, C. Estimating the optimal rotation age of Pinus nigra in the Spanish Iberian System applying discrete optimal control. For. Syst. 2010, 19, 306–314.
[15]
Maple, Version 16.0, Maplesoft, Ontario, Canada, 2012.
[16]
Front Line Systems Solver Premium Platform. Incline Village, NV, USA, 2008. 2008. Available online: http://www.solver.com (accessed on 26 July 2013).
[17]
Grande, M.A.; García Abril, A. Los Pinares de Pinus nigra Arn. en Espa?a: Ecología, uso y gestión; Fundación Conde del Valle de Salazar (FUCOVASA): Madrid, Spain, 2005; pp. 1–53.
[18]
Gómez Loranca, J.A. Modelo de crecimiento y producción para Pinus nigra Arn. en el Sistema Ibérico. Revista Montes 1998, 54, 5–18.
[19]
Siegel, W.; Hoover, W.; Haney, H.; Liu, K. Forest Owners’ Guide to the Federal Income Tax; Agriculture Handbook No. 708; United States Department of Agriculture, Forest Service: Washington, DC, USA, 1995; p. 138.
[20]
Retana, J.; Espelta, J.M.; Habrouk, A.; Ordó?ez, J.L.; Solà-Morales, F. Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in north-eastern Spain. Ecoscience 2002, 9, 89–97.
[21]
Tíscar, P.A. Dinámica de regeneración de Pinus nigra subs. Salzmannii al sur de su área de distribución: etapas, procesos y factores implicados. Inv. Agrar. Sist. Rec. F. 2007, 16, 124–135.
[22]
Tíscar Oliver, P.A.; Lucas, M.E.; Tíscar Soria, M.A. La alteración del suelo y la espesura como factores de regeneración de Pinus nigra subs. Salzmannii a lo largo de su área de distribución. Revista Montes 2010, 103, 10–15.
[23]
Schütz, J.P. Le régime du jardinage. Document autographique du cours de Sylviculture III. Chaire de Sylviculture; E.T.H. Zürich: Zürich, Switzerland, 1989; p. 55.
[24]
Serrada, R.; Domínguez Lerena, S.; Sánchez Resco, M.I.; Ruiz Ortiz, J. El problema de la regeneración natural de Pinus nigra Arn. Revista Montes 1994, 36, 52–57.
[25]
Van Mantgem, P.J.; Stephenson, N.T. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California. J. Ecol. 2005, 93, 737–747, doi:10.1111/j.1365-2745.2005.01007.x.
[26]
Misir, M.; Misir, N.; Yavuz, H. Modeling individual tree mortality for Crimean pine plantations. J. Environ. Biol. 2007, 28, 167–172.
[27]
Trasobares, A.; Pukkala, T. Optimising the management of uneven-aged Pinus sylvestris L. and Pinus nigra Arn. mixed stands in Catalonia, north-east Spain. Ann. For. Sci. 2004, 61, 747–758, doi:10.1051/forest:2004071.
[28]
Ramula, S.; Lehtil?, K. Matrix dimensionality in demographic analyses of plants: When to use smaller matrices? Oikos 2005, 111, 563–573, doi:10.1111/j.0030-1299.2005.13808.x.
[29]
Zuidema, P.A. Demography of Exploited Tree Species in the Bolivian Amazon; PROMAB Scientific Series 2; Promab: Riberalta, Bolivia, 2000; p. 240.
[30]
Keyfitz, N. Introduction to the Mathematics of Population; Addison-Wesley: Reading, MA, USA, 1968; p. 464.
[31]
Montero, G.; Rojo, A.; Alía, R. Determinación del turno de Pinus sylvestris L en el Sistema Central. Revista Montes 1992, 29, 42–47.
[32]
Boletín Mensual de Estadística 1994–2011; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2011; pp. 29–33.