Forest disturbances caused by pest insects are threatening ecosystem stability, sustainable forest management and economic return in boreal forests. Climate change and increased extreme weather patterns can magnify the intensity of forest disturbances, particularly at higher latitudes. Due to rapid responses to elevating temperatures, forest insect pests can flexibly change their survival, dispersal and geographic distributions. The outbreak pattern of forest pests in Finland has evidently changed during the last decade. Projection of shifts in distributions of insect-caused forest damages has become a critical issue in the field of forest research. The Common pine sawfly ( Diprion pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. Defoliation by D. pini has resulted in severe growth loss and mortality of Scots pine ( Pinus sylvestris L.) (Pinaceae) in eastern Finland. In this study, tree-wise defoliation was estimated for five different needle loss category classification schemes and for 10 different simulated airborne laser scanning (ALS) pulse densities. The nearest neighbor (NN) approach, a nonparametric estimation method, was used for estimating needle loss of 701 Scots pines, using the means of individual tree features derived from ALS data. The Random Forest (RF) method was applied in NN-search. For the full dense data (~20 pulses/m 2), the overall estimation accuracies for tree-wise defoliation level varied between 71.0% and 86.5% (kappa-values of 0.56 and 0.57, respectively), depending on the classification scheme. The overall classification accuracies for two class estimation with different ALS pulse densities varied between 82.8% and 83.7% (kappa-values of 0.62 and 0.67, respectively). We conclude that ALS-based estimation of needle losses may be of acceptable accuracy for individual trees. Our method did not appear sensitive to the applied pulse densities.
References
[1]
Attiwill, P.M. The disturbances of forest ecosystems: The ecological basis for conservative management. For. Ecol. Manag. 1994, 63, 247–300, doi:10.1016/0378-1127(94)90114-7.
[2]
Linke, J.; Betts, M.G.; Lavigne, M.B.; Franklin, S.E. Introduction: Structure, Function, and Change of Forest Landscapes. In Understanding Forest Disturbance and Spatial Pattern; Wulder, M.A., Franklin, S.E., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 1–29.
Fleming, R.A.; Candau, J.; McAlpine, R. Landscape scale analysis of interactions between insect defoliation and forest fire in central Canada. Clim. Chang 2002, 55, 251–272, doi:10.1023/A:1020299422491.
[5]
Lyytik?inen-Saarenmaa, P.; Tomppo, E. Impact of sawfly defoliation on growth of Scots pine Pinus sylvestris (Pinaceae) and associated economic losses. Bull. Entomol. Res. 2002, 92, 137–140.
[6]
Lyytik?inen-Saarenmaa, P.; Niemel?, P.; Annila, E. Growth Responses and Mortality of Scots Pine (Pinus sylvestris L.) after a Pine Sawfly Outbreak. In Proceedings of Forest Insect Population Dynamics and Host Influences, International Symposium of IUFRO, Kanazawa, Japan, 14–19 September 2003; Liebhold, A.L., Quiring, D.T., Clancy, K.M., Eds.; 2006; pp. 81–85.
[7]
IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avyret, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007.
[8]
Netherer, S.; Schopf, A. Potential effects of climate change on insect herbivores in European forests—General aspects and the pine processionary moth as specific example. For. Ecol. Manag. 2010, 259, 831–838, doi:10.1016/j.foreco.2009.07.034.
[9]
Seidl, R.; Schelaas, M.; Lexar, M. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang Biol. 2011, 17, 2842–2852, doi:10.1111/j.1365-2486.2011.02452.x.
[10]
Volney, W.J.A.; Fleming, R.A. Climate change and impacts of boreal forest insects. Agr. Ecosyst. Environ. 2000, 82, 283–294, doi:10.1016/S0167-8809(00)00232-2.
[11]
Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395.
[12]
Bj?rkman, C.; Bylund, H.; Klapwijk, M.J.; Kollberg, I.; Schroeder, M. Insect pests in future forests: More severe problems? Forests 2011, 2, 474–485, doi:10.3390/f2020474.
[13]
Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperatures on insect herbivores. Glob. Chang Biol. 2002, 8, 1–16, doi:10.1046/j.1365-2486.2002.00451.x.
[14]
Logan, J.A.; Regniere, J.; Powell, J.A. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 2003, 1, 130–137, doi:10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2.
[15]
Régniére, J. Predicting insect continental distributions from species physiology. Unasylva 2009, 60, 37–42.
[16]
Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolstr?m, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709, doi:10.1016/j.foreco.2009.09.023.
[17]
Battisti, A.; Stastny, M.; Buffo, E.; Larsson, S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob. Chang Biol. 2006, 12, 662–671.
[18]
Vanhanen, H.; Veteli, T.O.; P?ivinen, S.; Kellom?ki, S.; Niemel?, P. Climate change and range shifts in two insect defoliators: Gypsy moth and nun moth—A model study. Silva Fenn. 2007, 41, 621–638.
[19]
Hlásny, T.; Zaji?ková,, L.; Tur?áni, M.; Holu?a, J.; Sitková, Z. Gepgraphical variability of Spruce bark beetle development under climate change in the Czech Republic. J. For. Sci. 2011, 57, 242–249.
[20]
De Somviele, B.; Lyytik?inen-Saarenmaa, P.; Niemel?, P. Stand edge effects on distribution and condition of Diprionid sawflies. Agr. For. Entomol. 2007, 9, 17–30.
[21]
Lyytik?inen-Saarenmaa, P.; Holopainen, M.; Ilvesniemi, S.; Haapanen, R. Detecting pine sawfly defoliation by means of remote sensing and GIS. Forstsch. Aktuell. 2008, 44, 14–15.
[22]
Juutinen, P.; Varama, M. Ruskean m?ntypisti?isen (Neodiprion sertifer) esiintyminen Suomessa vuosina 1966–83. Folia For. 1986, 662, 1–39.
[23]
Tomppo, E. The Finnish National Forest Inventory. In Forest Inventory; Kangas, A., Maltamo, M., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 179–194.
[24]
Hall, R.J.; Skakun, R.S.; Arsenault, E.J. Remotely Sensed Data in the Mapping of Insect Defoliation. In Understanding Forest Disturbance and Spatial Pattern. Remote Sensing and GIS Approaches; Wulder, M.A., Franklin, S.E., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 85–111.
[25]
Magnussen, S.; Eggermont, P.; LaRiccia, V.N. Recovering tree heights from airborne laser scanner data. For. Sci. 1999, 45, 407–422.
[26]
Maltamo, M.; Mustonen, K.; Hyypp?, J.; Pitk?nen, J.; Yu, X. The accuracy of estimating individual tree variables with airborne laser scanning in boreal nature reserves. Can. J. For. Res. 2004, 34, 1791–1801, doi:10.1139/x04-055.
[27]
Falkowski, M.J.; Smith, A.M.S.; Hudak, A.T.; Gessler, P.E.; Vierling, L.A.; Crookston, N.L. Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Can. J. Remote Sens. 2006, 32, 153–161, doi:10.5589/m06-005.
[28]
Bortolot, Z.; Wynne, R.H. Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data. ISPRS J. Photogramm. Remote Sens. 2005, 59, 342–360, doi:10.1016/j.isprsjprs.2005.07.001.
[29]
Van Aardt, J.A.N.; Wynne, R.H.; Scrivani, J.A. Lidar-based mapping of forest volume and biomass by taxonomic group using structurally homogenous segments. Photogramm. Eng. Remote Sens. 2008, 74, 1033–1044.
[30]
Korpela, I.; ?rka, H.O.; Maltamo, M.; Tokola, T.; Hyypp?, J. Tree species classification using airborne LiDAR—Effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fenn. 2010, 44, 319–339.
[31]
Hyypp?, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. Geosci. Remote Sens. 2001, 39, 969–975, doi:10.1109/36.921414.
[32]
Wallerman, J.; Holmgren, J. Estimating field-plot data of forest stands using airborne laser scanning and SPOT HRG data. Remote Sens. Environ. 2007, 110, 501–508.
[33]
Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning ALS. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1371.
[34]
N?sset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99, doi:10.1016/S0034-4257(01)00290-5.
[35]
Holmgren, J.; Persson, A. Identifying species of individual trees using airborne laser scanner. Remote Sens. Environ. 2004, 90, 415–423, doi:10.1016/S0034-4257(03)00140-8.
[36]
Brandtberg, T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar. ISPRS J. Photogramm. Remote Sens. 2007, 61, 325–340, doi:10.1016/j.isprsjprs.2006.10.006.
[37]
Holopainen, M.; Vastaranta, M.; Rasinm?ki, J.; Kalliovirta, J.; M?kinen, A.; Haapanen, R.; Melkas, T.; Yu, X.; Hyypp?, J. Uncertainty in timber assortment estimates predicted from forest inventory data. Eur. J. For. Res. 2010, 129, 1131–1142, doi:10.1007/s10342-010-0401-4.
[38]
Vastaranta, M.; Holopainen, M.; Yu, X.; Hyypp?, J.; Hyypp?, H. Predicting stand-thinning maturity from airborne laser scanning data. Scand. J. For. Res. 2010, 26, 187–196.
[39]
Kantola, T.; Vastaranta, M.; Yu, X.; Lyytik?inen-Saarenmaa, P.; Holopainen, M.; Talvitie, M.; Kaasalainen, S.; Solberg, S.; Hyypp?, J. Classification of defoliated trees using tree-level airborne laser scanning data combined with aerial images. Remote Sens. 2010, 2, 2665–2679, doi:10.3390/rs2122665.
[40]
Vastaranta, M.; Korpela, I.; Uotila, A.; Hovi, A.; Holopainen, M. Mapping of snow-damaged trees in bi-temporal airborne LiDAR data. Eur. J. For. Res. 2012, 131, 1217–1228, doi:10.1007/s10342-011-0593-2.
[41]
Vastaranta, M.; Holopainen, M.; Yu, X.; Haapanen, R.; Melkas, T.; Hyypp?, J.; Hyypp?, H. Individual tree detection and area-based approach in retrieval of forest inventory characteristics from low-pulse airborne laser scanning data. Photogramm. J. Fin. 2011, 22, 1–13.
[42]
Sohlberg, S.; N?sset, E.; Hanssen, K.H.; Christiansen, E. Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sens. Environ. 2006, 102, 364–376, doi:10.1016/j.rse.2006.03.001.
[43]
Hawbaker, T.J.; Keuler, N.S.; Lesak, A.A.; Gobakken, T.; Contrucci, K.; Radeloff, V.C. Improved estimates of forest vegetation structure and biomass with a ALS-optimized sampling design. J. Geophys. Res. Lett. 2009, 114, doi:10.1029/2008JG000870.
[44]
Zhao, K.; Popescu, S.; Nelson, R. ALS remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sens. Environ. 2009, 113, 182–196, doi:10.1016/j.rse.2008.09.009.
[45]
Hanssen, K.; Solberg, S. Assessment of defoliation during a pine sawfly outbreak: Calibration of airborne laser scanning data with hemispherical photography. For. Ecol. Manag. 2007, 250, 9–16, doi:10.1016/j.foreco.2007.03.005.
[46]
Solberg, S. Mapping gap fraction, LAI and defoliation using various ALS penetration variables. Int. J. Remote Sens. 2010, 32, 1227–1244, doi:10.1080/01431160903380672.
[47]
R?ty, M.; Kankare, V.; Yu, X.; Holopainen, M.; Vastaranta, M.; Kantola, T.; Hyypp?, J.; Viitala, R. Tree Biomass Estimation Using ALS Features. In Proceedings of Silvilaser, the 11th International Conference on ALS Applications for Assessing Forest Ecosystems, Hobart, Australia, 16–20 November 2011.
[48]
Vastatanta, M.; Kantola, T.; Lyytik?inen-Saarenmaa, P.; Holopainen, M.; Kankare, V.; Wulder, M.; Hyypp?, J.; Hyypp?, H. Area-Based Mapping of Defoliation of Scots Pine Stands Using Airborne Scanning LiDAR. Remote Sens. 2013, 5, 1220–1234, doi:10.3390/rs5031220.
[49]
Hyypp?, J.; Jaakkola, A.; Hyypp?, H.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Zhu, L.; Vastaranta, M.; Kaasalainen, S.; Krooks, A.; et al. Map Updating and Change Detection Using Vehicle-Based Laser Scanning. In Proceedings of JURSE 2009, Shanghai, China, 20–22 May 2009.
[50]
Cajander, A.K. The theory of forest types. Acta For. Fenn. 1926, 29, 1–108.
[51]
Axelsson, P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models. In Proceedings of XIX ISPRS Congress, Commission I–VII, Amsterdam, The Netherlands, 16–23 July 2000; pp. 110–117.
[52]
Talvitie, M.; Kantola, T.; Holopainen, M.; Lyytikainen-Saarenmaa, P. Adaptive cluster sampling in inventorying forest damage by the common pine sawfly (Diprion pini). J. For. Plan. 2011, 16, 141–148.
Roesch, F.A., Jr. Adaptive cluster sampling for forest inventories. For. Sci. 1993, 39, 655–669.
[55]
Eichhorn, J. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Part II. Visual Assessment of Crown Condition and Submanual on Visual Assessment of Crown Condition on Intensive Monitoring Plots; United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution: Hamburg, Germany, 1998.
[56]
Hyypp?, J.; Inkinen, M. Detecting and estimating attributes for single trees using laser scanner. Photogramm. J. Fin. 1999, 16, 27–42.
[57]
Yu, X.; Hyypp?, J.; Holopainen, M.; Vastaranta, M.; Viitala, R. Predicting individual tree attributes from airborne laser point clouds based on random forest technique. ISPRS J. Photogramm. Remote Sens. 2011, 66, 28–37, doi:10.1016/j.isprsjprs.2010.08.003.
[58]
Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32, doi:10.1023/A:1010933404324.
[59]
Crookston, N.L.; Finley, A.O. yaImpute: AR package for e_cient nearest neighbor imputation routines, variance estimation, and mapping. Available online: http://cran.r-project.org (accessed on 10 November 2012).
[60]
Falkowski, M.; Hudak, A.; Crookston, N.; Gessler, P.; Smith, A. Landscape-scale parameterization of a tree-level forest growth model: A k-NN imputation approach incorporating LiDAR data. Can. J. For. Res. 2010, 40, 184–199, doi:10.1139/X09-183.
[61]
Hudak, A.; Crookston, N.; Evans, J.; Hall, D.; Falkowski, M. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens. Environ. 2008, 112, 2232–2245.
[62]
Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in temperate forest: Application of multiple optical/ALS-derived predictors. Forestry 2010, 83, 395–407, doi:10.1093/forestry/cpq022.
[63]
Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, P.E.; Hudak, A.T. Characterizing forest succession with ALS data: An evaluation for the Inland Northwest, USA. Remote Sens. Environ. 2009, 113, 946–956, doi:10.1016/j.rse.2009.01.003.
[64]
Kaartinen, H.; Hyypp?, J. EuroSDR/ISPRS Project Commission II, Tree Extraction, Final Report; EuroSDR, 2008. 2008. Available online: http://bono.hostireland.com/~eurosdr/publications/53.pdf (accessed on 10 November 2012).
[65]
Kaartinen, H.; Hyypp?, J.; Yu, X.; Vastaranta, M.; Hyypp?, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 2012, 4, 950–974, doi:10.3390/rs4040950.
[66]
Vauhkonen, J.; Korpela, I.; Maltamo, M.; Tokola, T. Imputation of single-tree attributes using airborne laser scanning-based height, intensity and alpha shape metrics. Remote Sens. Environ. 2010, 114, 1263–1276, doi:10.1016/j.rse.2010.01.016.
[67]
Vastaranta, M.; Korpela, I.; Uotila, M.; Hovi, A.; Holopainen, M. Area-Based Snow Damage Classification of Forest Canopies Using Bi-Temporal Lidar Data. In Proceedings of ISPRS Workshop on Laser Scanning 2011, Calgary, AB, Canada, 29–31 August 2011; p. 5.
[68]
Vehmas, M.; Packalén, P.; Maltamo, M. Assessing Deadwood Existence in Canopy Gaps by Using ALS Data. In Proceedings of Silvilaser 2009, College Station, TX, USA, 14–16 October 2009.
[69]
Lyytik?inen, P. Effects of natural and artificial defoliations on sawfly performance and foliar chemistry of Scots pine saplings. Ann. Zool. Fenn. 1994, 31, 307–318.
[70]
Vehmas, M.; Eerik?inen, K.; Peuhkurinen, J.; Packalén, P.; Maltamo, M. Airborne laser scanning for the site type identification of mature boreal forest stands. Remote Sens. 2011, 3, 100–116, doi:10.3390/rs3010100.
[71]
Ilvesniemi, S. Numeeriset Ilmakuvat ja Landsat TM-Satelliittikuvat M?nnyn Neulaskadon Arvioinnissa (in Finnish); Helsingin yliopisto: Helsinki, Finland, 2009; p. 62.
[72]
Haara, A.; Nevalainen, S. Detection of dead or defoliated spruces using digital aerial data. For. Ecol. Manag. 2002, 160, 97–107, doi:10.1016/S0378-1127(01)00473-X.
[73]
Karjalainen, M.; Kaasalainen, S.; Hyypp?, J.; Holopainen, M.; Lyytik?inen-Saarenmaa, P.; Krooks, A.; Jaakkola, A. SAR Satellite Images and Terrestrial Laser Scanning in Forest Damages Mapping in Finland. In Proceedings of ESA Living Planet Symposium 2010 ESA Special Publication, Bergen, Norway, 28 June–2 July 2010.