全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. maximowicii × P. trichocarpa Poplar Clone

DOI: 10.3390/f4020471

Keywords: SRC, biomass, Hybride 275, bark biomass model, bud biomass model, allometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study the quantification of biomass within all relevant compartments of a three-year-old poplar clone ( P. maximowicii × P. trichocarpa) planted on abandoned agricultural land at a density of 5000 trees ha ?1 is presented. A total of 30 trees within a diameter range of 1.8 cm to 8.9 cm, at breast height (dbh at 1.3 m), were destructively sampled. In order to analyze the biomass, the complete tree, stem, as well as all branches, were divided into 1 cm diameter classes and all buds from the trees were completely removed. Total yield was calculated as 11.7 odt ha ?1 year ?1 (oven dry tonnes per hectare and year). Branches constituted 22.2% of total dry leafless biomass and buds 2.0%. The analyses revealed a strong correlation of the dry weight for all the three compartments with diameter at breast height. Debarked sample discs were used to obtain a ratio between wood and bark. Derived from these results, a model was developed to calculate the biomass of bark with dbh as the predictor variable. Mean bark percentage was found to be 16.8% of above ground leafless biomass. The results concur that bark percentage decreases with increasing tree diameter, providing the conclusion that larger trees contain a lower bark proportion, and thus positively influence the quality of the end product while consequently reducing the export of nutrients from site.

References

[1]  Ferm, A.; Kauppi, A. Coppicing as a means for increasing hardwood biomass production. Biomass 1990, 22, 107–121, doi:10.1016/0144-4565(90)90010-H.
[2]  Mitchell, C.P.; Stevens, E.A.; Watters, M.P. Short-rotation forestry—Operations, productivity and costs based on experience gained in the UK. For. Ecol. Manag. 1999, 121, 123–136.
[3]  Berg, ?. Breeding birds in short-rotation coppices on farmland in central Sweden—The importance of Salix height and adjacent habitats. Agric. Ecosyst. Environ. 2002, 90, 265–276, doi:10.1016/S0167-8809(01)00212-2.
[4]  Sage, R.; Cunningham, M.; Boatman, N. Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. IBIS 2006, 148, 184–197, doi:10.1111/j.1474-919X.2006.00522.x.
[5]  Rowe, R.L.; Hanley, M.E.; Goulson, D.; Clarke, D.J.; Doncaster, C.P.; Taylor, G. Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 2011, 35, 325–336, doi:10.1016/j.biombioe.2010.08.046.
[6]  Dillen, S.; Marron, N.; Bastien, C.; Ricciotti, L.; Salani, F.; Sabatti, M.; Pinel, M.; Rae, A.; Taylor, G.; Ceulemans, R. Effects of environment and progeny on biomass estimations of five hybrid poplar families grown at three contrasting sites across Europe. For. Ecol. Manag. 2007, 252, 12–23.
[7]  Al Afas, N.; Marron, N.; Zavalloni, C.; Ceulemans, R. Growth and production of a short-rotation coppice culture of poplar—IV: Fine root characteristics of five poplar clones. Biomass Bioenergy 2008, 32, 494–502, doi:10.1016/j.biombioe.2007.11.007.
[8]  Filat, M.; Chira, D.; Nica, M.; Dogaru, M. First year development of poplar clones in biomass short rotation coppiced experimental cultures. Ann. Forest Res. 2010, 53, 151–160.
[9]  Ajit; Das, D.; Chaturvedi, O.; Jabeen, N.; Dhyani, S. Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: Development and comparative diagnosis. Biomass Bioenergy 2011, 35, 1145–1152, doi:10.1016/j.biombioe.2010.12.001.
[10]  Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Yield in 8 year-old hybrid poplar plantations on abandoned farmland along climatic and soil fertility gradients. For. Ecol. Manag. 2012, 267, 228–239, doi:10.1016/j.foreco.2011.12.012.
[11]  Felix, E.; Tilley, D.R.; Felton, G.; Flamino, E. Biomass production of hybrid poplar (Populus sp.) grown on deep-trenched municipal biosolids. Ecol. Eng. 2008, 33, 8–14, doi:10.1016/j.ecoleng.2007.10.009.
[12]  Pannacci, E.; Bartolini, S.; Covarelli, G. Evaluation of four poplar clones in a short rotation forestry in central Italy. Ital. J. Agron. 2009, 4, 191–198.
[13]  Pontailler, J.Y.; Ceulemans, R.; Guittet, J. Biomass yield of poplar after five 2-year coppice rotations. Forestry 1999, 72, 157–163.
[14]  Di Nassi o Nasso, N.; Guidi, W.; Ragaglini, G.; Tozzini, C.; Bonari, E. Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. GCB Bioenergy 2010, 2, 89–97, doi:10.1111/j.1757-1707.2010.01043.x.
[15]  White, E.H. Whole-tree harvesting depletes soil nutrients. Can. J. For. Res 1974, 4, 530–535, doi:10.1139/x74-077.
[16]  Hansen, E.; Baker, J. Biomass and Nutrient Removal in Short Rotation Intensively Cultured Plantations. In Proceedings of the Symposium on Impact of Intensive Harvesting on Forest Nutrient Cycling, Syracuse, NY, USA, 13–16 August 1979; pp. 130–151.
[17]  Van Hook, R.I.; Johnson, D.W.; West, D.C.; Mann, L.K. Environmental effects of harvesting forests for energy. For. Ecol. Manag. 1982, 4, 79–94, doi:10.1016/0378-1127(82)90030-5.
[18]  Adegbidi, H.G.; Volk, T.; White, E.H.; Abrahamson, L.P.; Briggs, R.D.; Bickelhaupt, D.H. Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 2001, 20, 399–411, doi:10.1016/S0961-9534(01)00009-5.
[19]  Rytter, L. Nutrient content in stems of hybrid aspen as affected by tree age and tree size, and nutrient removal with harvest. Biomass Bioenergy 2002, 23, 13–25, doi:10.1016/S0961-9534(02)00029-6.
[20]  Switzer, G.L.; Nelson, L.E.; Baker, J.B. Accumulation and Distribution of Dry Matter and Nutrients in Aigeiros Poplar Plantations. In Proceedings of the Symposium on Eastern Cottonwood and Related Species, Greenville, MS, USA, 28 September–2 October 1976; pp. 359–369.
[21]  Adler, A.; Verwijst, T.; Aronsson, P. Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy 2005, 29, 102–113, doi:10.1016/j.biombioe.2005.04.003.
[22]  Tharakan, P.J.; Volk, T.A.; Abrahamson, L.P.; White, E.H. Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 2003, 25, 571–580.
[23]  Klasnja, B.; Kopitovic, S.; Orlovic, S. Wood and bark of some poplar and willow clones as fuelwood. Biomass Bioenergy 2002, 23, 427–432, doi:10.1016/S0961-9534(02)00069-7.
[24]  Zavitkovski, J. Small plots with unplanted plot border can distort data in biomass production studies. Can. J. For. Res. 1981, 11, 9–12, doi:10.1139/x81-002.
[25]  Verwijst, T.; Telenius, B. Biomass estimation procedures in short rotation forestry. Forest Ecol. Manag. 1999, 121, 137–146, doi:10.1016/S0378-1127(98)00562-3.
[26]  Kittredge, J. Estimation of the amount of foliage of trees and stands. J. For. 1944, 42, 905–912.
[27]  Clough, B.F.; Scott, K. Allometric relationships for estimating above-ground biomass in six mangrove species. For. Ecol. Manag. 1989, 27, 117–127, doi:10.1016/0378-1127(89)90034-0.
[28]  Haase, R.; Haase, P. Above-ground biomass estimates for invasive trees and shrubs in the Pantanal of Mato Grosso, Brazil. For. Ecol. Manag. 1995, 73, 29–35, doi:10.1016/0378-1127(94)03509-U.
[29]  Nordh, N.; Verwijst, T. Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice—A comparison between destructive and non-destructive methods. Biomass Bioenergy 2004, 27, 1–8, doi:10.1016/j.biombioe.2003.10.007.
[30]  Zianis, D.; Muukkonen, P.; M?kip??, R.; Mencuccini, M. Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica Monographs 4; The Finnish Society of Forest Science, The Finnish Forest Research Institute: Vantaa, Finland, 2005.
[31]  Fang, S.; Xue, J.; Tang, L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns: Carbon sequestration in China’s forest ecosystems. J. Environ. Manag. 2007, 85, 672–679, doi:10.1016/j.jenvman.2006.09.014.
[32]  Paris, P.; Mareschi, L.; Sabatti, M.; Pisanelli, A.; Ecosse, A.; Nardin, F.; Scaracia-Mugnozza, G.E. Comparing hybrid Populus clones for SRF across northern Italy after two biennial rotations: Survival, growth and yield: Socioeconomic dimensions of U.S. bioenergy. Biomass Bioenergy 2011, 35, 1524–1532.
[33]  Burstr?m, H. The rate of the nutrient transport to swelling buds of trees. Physiol. Plant. 1948, 1, 124–135.
[34]  Guidi, W.; Piccioni, E.; Ginanni, M.; Bonari, E. Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in central Italy. Biomass Bioenergy 2008, 32, 518–524, doi:10.1016/j.biombioe.2007.11.012.
[35]  Subedi, M.R.; Sharma, R.P. Allometric biomass models for bark of Cinnamomum tamala in mid-hill of Nepal. Biomass Bioenergy 2012, 47, 44–49, doi:10.1016/j.biombioe.2012.10.006.
[36]  Deutscher Wetterdienst (DWD). Web-based Weather Request and Distribution System (WebWerdis). Available online: http://www.dwd.de/webwerdis (accessed on 15 February 2013).
[37]  VDLUFA (Association of German Agricultural Analytic and Research Institutes). Methods Book I “Soil Analysis” (1st–6th Supplement Delivery), 4th ed. ed.; VDLUFA-Verlag: Darmstadt, Germany, 1991.
[38]  VDLUFA (Association of German Agricultural Analytic and Research Institutes). Methods Book III “The Chemical Analysis of Feedstuffs” (1st–8th Supplement Delivery), 3rd ed. ed.; VDLUFA-Verlag: Darmstadt, Germany, 1976.
[39]  VDLUFA (Association of German Agricultural Analytic and Research Institutes). Methods Book VII “Environmental Analytics”, 4th ed. ed.; VDLUFA-Verlag: Darmstadt, Germany, 2011.
[40]  IBM SPSS Statistics for Windows; IBM Corp.: Armonk, NY, USA, 2011.
[41]  Rock, J. Suitability of published biomass equations for aspen in central Europe—Results from a case study. Biomass Bioenergy 2007, 31, 299–307, doi:10.1016/j.biombioe.2007.01.003.
[42]  Zianis, D. Predicting mean aboveground forest biomass and its associated variance. For. Ecol. Manag. 2008, 256, 1400–1407, doi:10.1016/j.foreco.2008.07.002.
[43]  Sprugel, D.G. Correcting for bias in log-transformed allometric equations. Ecology 1983, 64, 209–210, doi:10.2307/1937343.
[44]  Okello, B.D.; O’Connor, T.G.; Young, T.P. Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. For. Ecol. Manag. 2001, 142, 143–153, doi:10.1016/S0378-1127(00)00346-7.
[45]  Snorrason, A.; Einarsson, S.F. Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry. Icel. Agric. Sci. 2006, 19, 15–24.
[46]  Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From ?rom Measurement to Prediction; 2012.
[47]  Meyer, H.A. A correction for a systematic error occurring in the application of the logarithmic volume equation. Penn. State For. School. Res. Paper 1942, 42, 905–912.
[48]  Lee, C.Y. Comparison of two correction methods for the bias due to the logarithmic transformation in the estimation of biomass. Can. J. For. Res. 1982, 12, 326–331, doi:10.1139/x82-047.
[49]  Crow, T. A guide to using regression equations for estimating tree biomass. North. J. Appl. For. 1988, 5, 15–22.
[50]  Johansson, T. Biomass equations for determining fractions of common and grey alders growing on abandoned farmland and some practical implications. Biomass Bioenergy 2000, 18, 147–159, doi:10.1016/S0961-9534(99)00078-1.
[51]  Pellis, A.; Laureysens, I.; Ceulemans, R. Growth and production of a short rotation coppice culture of poplar I. Clonal differences in leaf characteristics in relation to biomass production. Biomass Bioenergy 2004, 27, 9–19, doi:10.1016/j.biombioe.2003.11.001.
[52]  Benetka, V.; Vrátny, F.; ?álková, I. Comparison of the productivity of Populus nigra L. with an interspecific hybrid in a short rotation coppice in marginal areas. Biomass Bioenergy 2007, 31, 367–374, doi:10.1016/j.biombioe.2007.01.005.
[53]  Anderson, H.W.; Balatinecz, C.P.; Chen, C.P.; Roy, D.N. Internal Biomass Characteristics for Efficient Energy Conversion. In Proceedings of the Joint Workshop of lEA/FE Programme Groups B, C and D, Uppsala, Sweden, 11 June 1984; Morgan, D.J., Gambles, R.L., Zsuffa, L., Eds.; International Energy Agency: Toronto, Canada, 1984; pp. 31–56.
[54]  Kenney, W.A.; Sennerby-Forsse, L.; Layton, P. A review of biomass quality research relevant to the use of poplar and willow for energy conversion. Biomass 1990, 21, 163–188, doi:10.1016/0144-4565(90)90063-P.
[55]  Jug, A.; Hofmann-Schielle, C.; Makeschin, F.; Rehfuess, K.E. Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. II. Nutritional status and bioelement export by harvested shoot axes. For. Ecol. Manag. 1999, 121, 67–83, doi:10.1016/S0378-1127(98)00557-X.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133