全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

Stability of Slash Pine Families with Major Gene and Partial Resistance to Single-Gall and Mixed-Gall Inocula of Cronartium quercuum fusiforme in Greenhouse Studies

DOI: 10.3390/f4020488

Keywords: Pinus elliottii var. elliottii, fusiform rust, pathogen virulence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Single-gall and mixed-gall inocula from fusiform rust ( Cronartium quercuum fusiforme) galls in field studies were used in greenhouse tests to investigate their pathogenic variability and the temporal and spatial stability of fusiform rust incidence of resistant slash pine ( Pinus elliottii var. elliottii) seedlings. Analyses of variance showed significant main effects for families and inocula and for the interactions of families and inocula indicating abundant pathogenic variation and differential family resistance. Averaged over all families and inocula, there were no significant differences between sequential inocula, i.e., inocula from successive generations of the pathogen. However, when analyzed separately Family R1 with segregated major gene resistance showed increased rust incidence with successive generations of the pathogen. Also Family R1 accounted for a major portion of the temporal (51.4%) and spatial (49.6%) interaction sum of squares. In contrast the other resistant families each accounted for a minor portion of this statistic. These results indicate pathogen virulence toward major gene resistance, possible selection for virulence and the relative instability of Family R1 compared with other resistance families.

References

[1]  Griggs, M.M.; Schmidt, R.A. Increase and Spread of Fusiform Rust. In Proceedings of Management of Fusiform Rust in Southern Pines, Gainesville, FL, USA, 7–8 December 1977; pp. 32–38.
[2]  Dinus, R.J. Knowledge about Natural Ecosystems as a Guide to Disease Control in Managed Forests. In Proceedings of American Phytopathology Society; American Phytopathological Society: Vancouver, Canada, 1974; pp. 184–190.
[3]  Schmidt, R.A. Diseases in Forest Ecosystems: The Importance of Functional Diversity. In Plant Disease: An Advanced Treatise. Vol. II. How Disease Develops in Populations; Horsfall, J.G., Cowling, E.B., Eds.; Academic Press: New York, NY, USA, 1978; pp. 187–315.
[4]  Pye, J.M.; Wagner, J.E.; Holmes, T.P.; Cubbage, F.W. Positive Returns from Investment in Fusiform Rust Research; U. S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 1997; p. 55.
[5]  Schmidt, R.A. Fusiform rust of southern pines: A major success story for forest disease management. Phytopathology 2003, 93, 1048–1051, doi:10.1094/PHYTO.2003.93.8.1048.
[6]  Kuhlman, E.G. Frequency of single-gall isolates of Cronartium quercuum F. sp. fusiforme with virulence toward three resistant loblolly pine families. Phytopathology 1990, 80, 614–617, doi:10.1094/Phyto-80-614.
[7]  Powers, H.R., Jr. The use of survivors of artificial inoculation tests in developing fusiform rust resistant seed orchards. Phytopathol. Medit. 1980, 19, 17–20.
[8]  Snow, G.A.; Dinus, R.J.; Kais, A.G. Variation in pathogenicity of diverse sources of Cronartium fusiforme on selected slash pine families. Phytopathology 1975, 65, 170–175, doi:10.1094/Phyto-65-170.
[9]  Snow, G.A.; Kais, A.G. Pathogenic variability in isolates of Cronartium fusiforme from five southern states. Phytopathology 1970, 60, 1730–1731, doi:10.1094/Phyto-60-1730.
[10]  Wilcox, P.L.; Amerson, H.V.; Kuhlman, E.G.; Liu, B.H.; O’Malley, D.M.; Sederoff, R.R. Detection of a Major Gene for Resistance to Fusiform Rust Disease in Loblolly Pine by Genomic Mapping. Proc. Natl. Acad. Sci. USA 1996, 93, 3859–3864.
[11]  Nelson, C.D.; Doudrick, R.L.; Nance, W.L.; Hamaker, J.M.; Capo, B. Specificity of Host: Pathogen Genetic Interaction for Fusiform Rust Disease on Slash Pine. In Proceedings of the 22nd Southern Forest Tree Improvement Conference, Atlanta, GA, USA, 14–17 June 1993; pp. 403–410.
[12]  Kong, X. RAPD Mapping and Its Application to Slash Pine Breeding. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 1996.
[13]  Amerson, H.V. Department of Forestry, North Carolina State University: Raleigh, NC, USA, 2002.
[14]  Knighten, J.L.; Young, C.H.; McCartney, T.C.; Anderson, R.L. Resistance Screening Center Procedures Manual: A Step-by-Step Guide Used in the Operational Screening of Southern Pines for Resistance to Fusiform Rust; U. S. Department of Agriculture Forest Service: Asheville, NC, USA, 1988; p. 62.
[15]  Gramacho, K.P. Disease Resistance and Pathogenic Variability in the Fusiform Rust Slash Pine Pathosystem. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1999.
[16]  Walkinshaw, C.H.; Dell, T.R.; Hubbard, S.D. Predicting Field Performance of Slash Pine Families from Inoculated Greenhouse Seedlings; Forest Experiment Station Research Paper SO-160U; U. S. Department of Agriculture Forest Service South: Asheville, NC, USA, 1980.
[17]  Schmidt, R.A.; Goddard, R.E. Preliminary Results of Fusiform Rust Resistance from Field Progeny Tests of Selected Slash Pines. In Proceedings of the Eleventh Conference of Southern Forest Tree Improvement, Atlanta, GA, USA, 11–12 June 1971; pp. 37–44.
[18]  Sohn, S.I.; Goddard, R.E.; Schmidt, R.A. Comparative Performances of Slash Pine for Fusiform Rust Resistance in High Rust Hazard Locations. In Proceedings of the Thirteenth Forest Tree Improvement Conference, Raleigh, NC, USA, 10–11 June 1975; pp. 204–211.
[19]  Goddard, R.E.; Schmidt, R.A. Early Identification of Rust-Resistant Slash Pine through Controlled Inoculations. In Proceedings of the Eleventh Conference of Southern Forest Tree Improvement, Atlanta, GA, USA, 11–12 June 1971; pp. 31–36.
[20]  Schmidt, R.A.; Gramacho, K.P.; Miller, T.; Young, C.H. Components of partial resistance in the slash pine—Fusiform rust pathosystem. Phytopathology 2000, 90, 1005–1010, doi:10.1094/PHYTO.2000.90.9.1005.
[21]  Isik, F.; Amerson, H.V.; Whetten, R.W.; Garcia, S.A.; McKeand, S.E. Interaction of Fr genes and mixed-pathogen inocula in the loblolly pine-fusiform rust pathosystem. Tree Genet. Genomes 2012, 8, 15–25, doi:10.1007/s11295-011-0416-0.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133