Direct tree seeding is potentially an economical technique for restoring forests on abandoned fields. However, the success of tree establishment depends on many factors related to species and seed characteristics, environmental conditions, competition and predation. We compared seedling emergence, survival and growth of six tree species of different seed sizes in a forest restoration project of abandoned fields. Species were seeded in plots with and without herbaceous vegetation and with and without protection from bird and mammal predation. Yellow birch ( Betula alleghaniensis) did not emerge in all treatments, paper birch ( Betula papyrifera) and tamarack ( Larix laricina) had a seedling emergence rate lower than 1%, and sugar maple ( Acer saccharum) had a low overall emergence rate of 6%. Seedling emergence reached 57% for northern red oak ( Quercus rubra) and 34% for red pine ( Pinus resinosa), but survival of oak after one year was much higher (92%) than pine seedlings (16%). Overall, protection from birds and mammals and elimination of the herbaceous vegetation cover had no detectable effects on seedling emergence, survival and height. Nonetheless, red oak seedlings growing in the presence of vegetation had a smaller diameter and shoot biomass and a larger specific leaf area. We conclude that only large seeded species, such as oak, should be used for forest restoration of abandoned fields by direct seeding in our region.
References
[1]
MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69, doi:10.1006/jema.1999.0335.
[2]
Ramankutty, N.; Foley, J.A. Estimating historical changes in land cover: North American croplands from 1850 to 1992. Glob. Ecol. Biogeogr. 1999, 8, 381–396, doi:10.1046/j.1365-2699.1999.00141.x.
[3]
Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027, doi:10.1029/1999GB900046.
[4]
Domon, G.; Bouchard, A.; Gariepy, M. The dynamics of the forest landscape of Haut-Saint-Laurent (Quebec, Canada): Interactions between biophysical factors, perceptions and policy. Landsc. Urban Plan. 1993, 25, 53–74, doi:10.1016/0169-2046(93)90122-T.
[5]
Niering, W.A.; Goodwin, R.H. Creation of relatively stable shrublands with herbicides: Arresting “Succession” on rights-of-way and pastureland. Ecology 1974, 55, 784–795, doi:10.2307/1934414.
[6]
Benjamin, K.; Domon, G.; Bouchard, A. Vegetation composition and succession of abandoned farmland: Effects of ecological, historical and spatial factors. Landsc. Ecol. 2005, 20, 627–647, doi:10.1007/s10980-005-0068-2.
[7]
D’Orangeville, L.; Bouchard, A.; Cogliastro, A. Post-Agricultural forests: Landscape patterns add to stand-scale factors in causing insufficient hardwood regeneration. For. Ecol. Manag. 2008, 255, 1637–1646.
[8]
Hill, J.D.; Canham, C.D.; Wood, D.M. Patterns and causes of resistance to tree invasion in rights-of-way. Ecol. Appl. 1995, 5, 459–470, doi:10.2307/1942036.
[9]
Engel, V.L.; Parrotta, J.A. An evaluation of direct seeding for reforestation of degraded lands in central S?o Paulo State, Brazil. For. Ecol. Manag. 2001, 152, 169–181, doi:10.1016/S0378-1127(00)00600-9.
[10]
Hooper, E.; Condit, R.; Legendre, P. Responses of 20 native tree species to reforestation strategies for abandoned farmland in Panama. Ecol. Appl. 2002, 12, 1626–1641, doi:10.1890/1051-0761(2002)012[1626:RONTST]2.0.CO;2.
[11]
Sampaio, A.B.; Holl, K.D.; Scariot, A. Does restoration enhance regeneration of seasonal deciduous forests in pastures in central Brazil? Restor. Ecol. 2007, 15, 462–471, doi:10.1111/j.1526-100X.2007.00242.x.
[12]
King, S.L.; Keeland, B.D. Evaluation of reforestation in the Lower Mississippi River Alluvial Valley. Restor. Ecol. 1999, 7, 348–359, doi:10.1046/j.1526-100X.1999.72029.x.
[13]
Bullard, S.; Hodges, J.D.; Johnson, R.L.; Straka, T.J. Economics of direct seeding and planting for establishing oak stands on old-field sites in the south. South. J. Appl. For. 1992, 16, 34–40.
[14]
De Steven, D. Experiments on mechanisms of tree establishment in old-field succession: Seedling emergence. Ecology 1991, 72, 1066–1075, doi:10.2307/1940606.
[15]
Gill, D.S.; Marks, P.L. Tree and shrub seedling colonization of old fields in central New York. Ecol. Monogr. 1991, 61, 183–205, doi:10.2307/1943007.
[16]
Burton, P.J.; Bazzaz, F.A. Tree seedling emergence on interactive temperature and moisture gradients and in patches of old-field vegetation. Am. J. Bot. 1991, 78, 131–149, doi:10.2307/2445236.
[17]
Doust, S.J.; Erskine, P.D.; Lamb, D. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For. Ecol. Manag. 2006, 234, 333–343, doi:10.1016/j.foreco.2006.07.014.
[18]
Myster, R.W. Contrasting litter effects on old field tree germination and emergence. Plant Ecol. 1994, 114, 169–174.
[19]
Gómez-Aparicio, L. The role of plant interactions in the restoration of degraded ecosystems: A meta-analysis across life-forms and ecosystems. J. Ecol. 2009, 97, 1202–1214, doi:10.1111/j.1365-2745.2009.01573.x.
[20]
De Steven, D. Experiments on mechanisms of tree establishment in old-field succession: Seedling survival and growth. Ecology 1991, 72, 1076–1088, doi:10.2307/1940607.
[21]
Ostfeld, R.S.; Canham, C.D. Effects of meadow vole population density on tree seedling survival in old fields. Ecology 1993, 74, 1792–1801, doi:10.2307/1939937.
[22]
Ostfeld, R.S.; Manson, R.H.; Canham, C.D. Effects of rodents on survival of tree seeds and seedlings invading old fields. Ecology 1997, 78, 1531–1542, doi:10.1890/0012-9658(1997)078[1531:EOROSO]2.0.CO;2.
[23]
Manson, R.H.; Ostfeld, R.S.; Canham, C.D. Long-Term effects of rodent herbivores on tree invasion dynamics along forest-field edges. Ecology 2001, 82, 3320–3329.
[24]
Herrera, C.M. Plant-vertebrate seed dispersal systems in the Mediterranean: Ecological, evolutionary, and historical determinants. Annu. Rev. Ecol. Syst. 1995, 26, 705–727.
[25]
Kollmann, J.; Schill, H.P. Spatial patterns of dispersal, seed predation and germination during colonization of abandoned grassland by Quercus petraea and Corylus avellana. Vegetatio 1996, 125, 193–205, doi:10.1007/BF00044651.
[26]
Hulme, P.E.; Borelli, T. Variability in post-dispersal seed predation in deciduous woodland: Relative importance of location, seed species, burial and density. Plant Ecol. 1999, 145, 149–156, doi:10.1023/A:1009821919855.
[27]
Woods, K.; Elliott, S. Direct seeding for forest restoration on abandoned agricultural land in northern Thailand. J. Trop. For. Sci. 2004, 16, 248–259.
[28]
Moles, A.T.; Warton, D.I.; Westoby, M. Do small-seeded species have higher survival through seed predation than large-seeded species? Ecology 2003, 84, 3148–3161.
[29]
Environment Canada. Monthly Data Report for 2010. Montréal/Pierre Elliott Trudeau Intl A, Québec. Available online: http://www.climate.weatheroffice.gc.ca/climateData/monthlydata_ e.html?timeframe=3&Prov=XX&StationID=5415&Year=2010&Month=1&Day=1 (accessed on 22 January 2013).
[30]
Environment Canada. Monthly Data Report for 2011. Montréal/Pierre Elliott Trudeau Intl A, Québec. Available online: http://www.climate.weatheroffice.gc.ca/climateData/monthlydata_ e.html?timeframe=3&Prov=XX&StationID=5415&Year=2011&Month=1&Day=1 (accessed on 22 January 2013).
[31]
Institut de recherche et de développement en agroenvironnement (IRDA). études pédologiques. Available online: http://www.irda.qc.ca/fr/Etudes-pedologiques (accessed on 12 December 2012).
[32]
Burns, R.M.; Honkala, B.H. Silvics of North America: 1. Conifers; 2. Hardwoods; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 2, p. 877.
[33]
Centre des semences forestières de Berthier (CSFB). Quebec Ministry of Natural Resources. Sainte-Geneviève-de-Berthier (Québec): Canada, 2010.
[34]
Royal Botanic Gardens Kew. Seed Information Database (SID)Version 7.1. Available online: http://data.kew.org/sid/ (accessed on 17 December 2012).
[35]
U.S. Department of Agriculture. The PLANTS Database. Available online: http://plants.usda.gov (accessed on 11 February 2013).
[36]
Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ter Steege, H.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380, doi:10.1071/BT02124.
[37]
Messier, C.; Puttonen, P. Spatial and temporal variation in the light environment of developing scots pine stands: The basis for a quick and efficient method of characterizing light. Can. J. For. Res. 1995, 25, 343–354, doi:10.1139/x95-038.
[38]
JMP Software. In JMP Statistical Discovery Software. Version 10.0; SAS Institute Inc.: Cary, NC, USA, 2007.
[39]
Ray, G.J.; Brown, B.J. Restoring Caribbean dry forests: Evaluation of tree propagation techniques. Restor. Ecol. 1995, 3, 86–94, doi:10.1111/j.1526-100X.1995.tb00081.x.
[40]
Doust, S.J.; Erskine, P.D.; Lamb, D. Restoring rainforest species by direct seeding: Tree seedling establishment and growth performance on degraded land in the wet tropics of Australia. For. Ecol. Manag. 2008, 256, 1178–1188, doi:10.1016/j.foreco.2008.06.019.
[41]
Environment Canada. Canadian Climate Normals 1971–2000. Montréal/Pierre Elliott Trudeau Intl A, Québec. Available online: http://www.climate.weatheroffice.gc.ca/climate_normals/ results_e.html?stnID=5415&lang=f&dCode=1&StationName=MONTREAL&SearchType=Contains&province=ALL&provBut=&month1=0&month2=12 (accessed on 22 January 2013).
[42]
Jinks, R.L.; Willoughby, I.; Baker, C. Direct seeding of ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.): The effects of sowing date, pre-emergent herbicides, cultivation, and protection on seedling emergence and survival. For. Ecol. Manag. 2006, 237, 373–386.
[43]
Willoughby, I.; Jinks, R.L.; Kerr, G.; Gosling, P.G. Factors affecting the success of direct seeding for lowland afforestation in the UK. Forestry 2004, 77, 467–482, doi:10.1093/forestry/77.5.467.
[44]
Mendoza, I.; Zamora, R.; Castro, J. A seeding experiment for testing tree-community recruitment under variable environments: Implications for forest regeneration and conservation in mediterranean habitats. Biol. Conserv. 2009, 142, 1491–1499, doi:10.1016/j.biocon.2009.02.018.
[45]
Beckage, B.; Clark, J.S. Seedling survival and growth of three forest tree species: The role of spatial heterogeneity. Ecology 2003, 84, 1849–1861, doi:10.1890/0012-9658(2003)084[1849:SSAGOT]2.0.CO;2.
[46]
Tripathi, R.; Khan, M. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest. Oikos 1990, 57, 289–296, doi:10.2307/3565956.
[47]
Berkowitz, A.R.; Canham, C.D.; Kelly, V.R. Competition vs. Facilitation of tree seedling growth and survival in early successional communities. Ecology 1995, 76, 1156–1168, doi:10.2307/1940923.
[48]
Poorter, L. Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Funct. Ecol. 1999, 13, 396–410, doi:10.1046/j.1365-2435.1999.00332.x.
[49]
Van Hees, A.F.M. Growth and morphology of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought. Ann. For. Sci. 1997, 54, 9–18.
[50]
L?f, M.; Thomsen, A.; Madsen, P. Sowing and transplanting of broadleaves (Fagus sylvatica L., Quercus robur L., Prunus avium L. and Crataegus monogyna Jacq.) for afforestation of farmland. For. Ecol. Manag. 2004, 188, 113–123.
[51]
Laliberté, E.; Cogliastro, A.; Bouchard, A. Spatiotemporal patterns in seedling emergence and early growth of two oak species direct-seeded on abandoned pastureland. Ann. For. Sci. 2008, 65, doi:10.1051/forest:2008019.
[52]
Davis, M.A.; Wrage, K.J.; Reich, P.B. Competition between tree seedlings and herbaceous vegetation: Support for a theory of resource supply and demand. J. Ecol. 1998, 86, 652–661, doi:10.1046/j.1365-2745.1998.00087.x.
[53]
Davis, M.A.; Wrage, K.J.; Reich, P.B.; Tjoelker, M.G.; Schaeffer, T.; Muermann, C. Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. Plant Ecol. 1999, 145, 341–350, doi:10.1023/A:1009802211896.
[54]
St-Denis, A.; Messier, C.; Kneeshaw, D. Predation, competition and facilitation in a forest restoration project of abandoned fields. 2013. in preparation.
[55]
Garcia-Orth, X.; Martinez-Ramos, M. Seed dynamics of early and late successional tree species in tropical abandoned pastures: Seed burial as a way of evading predation. Restor. Ecol. 2008, 16, 435–443, doi:10.1111/j.1526-100X.2007.00320.x.
[56]
Andersen, A.N. Effects of seed predation by ants on seedling densities at a woodland site in SE Australia. Oikos 1987, 48, 171–174, doi:10.2307/3565852.
Doust, S.J. Seed removal and predation as factors affecting seed availability of tree species in degraded habitats and restoration plantings in rainforest areas of Queensland, Australia. Restor. Ecol. 2011, 19, 617–626, doi:10.1111/j.1526-100X.2010.00681.x.
[59]
Willoughby, I.H.; Jinks, R.L.; Morgan, G.W.; Pepper, H.; Budd, J.; Mayle, B. The use of repellents to reduce predation of tree seed by wood mice (Apodemus sylvaticus L.) and grey squirrels (Sciurus carolinensis Gmelin). Eur. J. For. Res. 2011, 130, 601–611.
[60]
Hulme, P.E. Post-dispersal seed predation: Consequences for plant demography and evolution. Perspect. Plant Ecol. 1998, 1, 32–46, doi:10.1078/1433-8319-00050.