全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability

DOI: 10.3390/su6010217

Keywords: green supplier selection, thermal power equipment, fuzzy-TOPSIS, fuzzy-entropy, sustainability

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the growing worldwide awareness of environmental protection and sustainable development, green purchasing has become an important issue for companies to gain environmental and developmental sustainability. Thermal power is the main power generation form in China, and the green supplier selection is essential to the smooth and sustainable construction of thermal power plants. Therefore, selecting the proper green supplier of thermal power equipment is very important to the company’s sustainable development and the sustainability of China’s electric power industry. In this paper, a hybrid fuzzy multi-attribute decision making approach (fuzzy entropy-TOPSIS) is proposed for selecting the best green supplier. The fuzzy set theory is applied to translate the linguistic preferences into triangular fuzzy numbers. The subjective criteria weights are determined by using decision makers’ superiority linguistic ratings and the objective ones are determined by combining the superiority linguistic ratings and fuzzy-entropy weighting method. The fuzzy TOPSIS is employed to generate an overall performance score for each green supplier. An empirical green supplier selection is conducted to illustrate the effectiveness of this proposed fuzzy entropy-TOPSIS approach. This proposed fuzzy entropy-TOPSIS approach can select the proper green supplier of thermal power equipment, which contributes to promoting the company’s sustainable development and the sustainability of China’s electric power industry to some extent.

References

[1]  Luo, C.Y.; Chen, L.; Zhao, H.; Guo, S.Y.; Wang, G.S. Challenges facing socioeconomic development as a result of China’s environmental problems and future prospects. Ecol. Eng. 2013, 60, 199–203, doi:10.1016/j.ecoleng.2013.07.060.
[2]  Chen, Y.S. Towards green loyalty: Driving from green perceived value, green satisfaction, and green trust. Sustainable Dev. 2013, 21, 294–308, doi:10.1002/sd.500.
[3]  Xu, L.; Mathiyazhagan, K.; Govindan, K.; Haq, N.A.; Ramachandran, N.V.; Ashokkumar, A. Multiple comparative studies of green supply chain management: Pressures analysis. Resour. Conserv. Recycl. 2013, 78, 26–35, doi:10.1016/j.resconrec.2013.05.005.
[4]  Deng, X.Y.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D numbers. Expert Syst. Appl. 2014, 41, 156–167, doi:10.1016/j.eswa.2013.07.018.
[5]  Kannan, D.; Khodaverdi, R.; Olfat, L.; Jafarian, A.; Diabat, A. Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. J. Cleaner Prod. 2013, 47, 355–367, doi:10.1016/j.jclepro.2013.02.010.
[6]  Shen, L.X.; Olfat, L.; Govindan, K.; Khodaverdi, R.; Diabat, A. A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain with linguistic preferences. Resour. Conserv. Recycl. 2013, 74, 170–179.
[7]  Buyukozkan, G.; Cifci, G. A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Syst. Appl. 2012, 39, 3000–3011, doi:10.1016/j.eswa.2011.08.162.
[8]  Buyukozkan, G. An integrated fuzzy multi-criteria group decision-making approach for green supplier evaluation. Int. J. Prod. Res. 2012, 50, 2892–2909, doi:10.1080/00207543.2011.564668.
[9]  Cifci, G.; Buyukozkan, G. A Fuzzy MCDM Approach to Evaluate Green Suppliers. Int. J. Comput. Intell. Syst. 2011, 4, 894–909.
[10]  Kuo, R.J.; Wang, Y.C.; Tien, F.C. Integration of artificial neural network and MADA methods for green supplier selection. J. Cleaner Prod. 2010, 18, 1161–1170, doi:10.1016/j.jclepro.2010.03.020.
[11]  Bai, C.G.; Sarkis, J. Green supplier development: Analytical evaluation using rough set theory. J. Cleaner Prod. 2010, 18, 1200–1210, doi:10.1016/j.jclepro.2010.01.016.
[12]  Lee, A.H.I.; Kang, H.Y.; Hsu, C.F.; Hung, H.C. A green supplier selection model for high-tech industry. Expert Syst. Appl. 2009, 36, 7917–7927, doi:10.1016/j.eswa.2008.11.052.
[13]  Zadeh, L.A. Fuzzy Set. Inf. Control 1965, 8, 338–353.
[14]  Liang, G.S. Fuzzy MCDM based on ideal and anti-ideal concepts. Eur. J. Oper. Res. 1999, 112, 682–691, doi:10.1016/S0377-2217(97)00410-4.
[15]  Anjali, A.; Chauhanb, S.S.; Goyalb, S.K. A fuzzy multicriteria approach for evaluating environmental performance of suppliers. Int. J. Prod. Econ. 2010, 126, 370–378, doi:10.1016/j.ijpe.2010.04.029.
[16]  Chen, S.H.; Hsieh, C.H. Representation, ranking, distance, and similarity of L-R type fuzzy number and application. Aust. J. Intell. Process. Syst. 2000, 6, 217–229.
[17]  Liao, M.S.; Liang, G.S.; Chen, C.Y. Fuzzy grey relation method for multiple criteria decision-making problems. Qual. Quant. 2013, 47, 3065–3077, doi:10.1007/s11135-012-9704-5.
[18]  Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning, part 1. Inf. Sci. 1975, 8, 199–249.
[19]  Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning, part 2. Inf. Sci. 1975, 8, 301–357, doi:10.1016/0020-0255(75)90046-8.
[20]  Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning, part 3. Inf. Sci. 1975, 9, 43–58.
[21]  Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423, doi:10.1002/j.1538-7305.1948.tb01338.x.
[22]  Zou, Z.H.; Yun, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023, doi:10.1016/S1001-0742(06)60032-6.
[23]  Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued intuitionistic fuzzy sets. Fuzzy Set. Syst. 1996, 78, 305–316, doi:10.1016/0165-0114(96)84611-2.
[24]  Hwang, C.L.; Yoon, K. Multiple attributes decision making methods and applications; Springer: Berlin, Germany, 1981.
[25]  hu, X.Q.; Li, J.Q.; Wu, D.S.; Wang, H.Y.; Liang, C.Z. Balancing accuracy, complexity and interpretability in consumer credit decision making: A C-TOPSIS classification approach. Knowl.-Based Syst. 2013, 52, 258–267, doi:10.1016/j.knosys.2013.08.004.
[26]  Khorshidi, R.; Hassani, A. Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite. Mater. Des. 2013, 52, 999–1010, doi:10.1016/j.matdes.2013.06.011.
[27]  Bar??, ?.; Yusuf, T.?.; Emir, H.?. A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete. Chemom. Intell. Lab. Syst. 2013, 125, 18–32, doi:10.1016/j.chemolab.2013.03.012.
[28]  Sachin, K.; Patil, R.K. A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Syst. Appl. 2014, 41, 679–693, doi:10.1016/j.eswa.2013.07.093.
[29]  Kaveh, K.D.; Soheil, S.N.; Tavana, M. Solving multi-period project selection problems with fuzzy goal programming based on TOPSIS and a fuzzy preference relation. Inf. Sci. 2013, 252, 42–61, doi:10.1016/j.ins.2013.05.005.
[30]  Menga, E.; Angelo, D.; Liu, X.D. The use of axiomatic fuzzy set theory in AHP and TOPSIS methodology to determine strategies priorities by SWOT analysis. Qual. Quant. 2013, 47, 2671–2685, doi:10.1007/s11135-012-9679-2.
[31]  Govindana, K.; Rajendranb, S.; Sarkisc, J.; Murugesand, P. Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. J. Cleaner Prod. 2013. in press.
[32]  Rudolf, V.; Adiel, T.A. A PROMETHEE-based approach to portfolio selection problems. Comput. Oper. Res. 2012, 39, 1010–1020, doi:10.1016/j.cor.2011.06.019.
[33]  Li, H.Z.; Guo, S. External economies evaluation of wind power engineering project based on analytic hierarchy process and matter-element extension model. Math. Probl. Eng. 2013. in press.
[34]  Wan, S.P.; Wang, Q.Y.; Dong, J.Y. The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers. Knowl.-Based Syst. 2013, 53, 65–77.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413