全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonparametric Forecasting for Biochar Utilization in Poyang Lake Eco-Economic Zone in China

DOI: 10.3390/su6010267

Keywords: biochar, Poyang Lake Eco-economic Zone, nonparametric estimation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Agriculture is the least profitable industry in China. However, even with large financial subsidies from the government, farmers’ living standards have had no significant impact so far due to the historical, geographical, climatic factors. The study examines and quantifies the net economic and environmental benefits by utilizing biochar as a soil amendment in eleven counties in the Poyang Lake Eco-Economic Zone. A nonparametric kernel regression model is employed to estimate the relation between the scaled environmental and economic factors, which are determined as regression variables. In addition, the partial linear and single index regression models are used for comparison. In terms of evaluations of mean squared errors, the kernel estimator, exceeding the other estimators, is employed to forecast benefits of using biochar under various scenarios. The results indicate that biochar utilization can potentially increase farmers’ income if rice is planted and the net economic benefits can be achieved up to ¥114,900. The net economic benefits are higher when the pyrolysis plant is built in the south of Poyang Lake Eco-Economic Zone than when it is built in the north as the southern land is relatively barren, and biochar can save more costs on irrigation and fertilizer use.

References

[1]  Lehmann, J.; Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357, doi:10.1023/A:1022833116184.
[2]  Chan, K.Y.; Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634, doi:10.1071/SR07109.
[3]  Baggs, E.M.; Stevenson, M.; Pihlatie, M.; Regar, A.; Cook, H.; Cadisch, G. Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant Soil 2003, 254, 361–370, doi:10.1023/A:1025593121839.
[4]  Farquharson, J.; Baldock, J. Concepts in modeling N2O emissions from land use. Plant Soil 2008, 309, 17–167.
[5]  Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strategy Glob. Change 2006, 11, 403–427.
[6]  McCarl, B.A.; Peacocke, C.; Chrisman, R.; Kung, C.C.; Ronald, D. Economics of Biochar Production, Utilization, and GHG Offsets. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 341–357.
[7]  Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144, doi:10.1038/447143a.
[8]  Wright, M.M.; Brown, R.C.; Boateng, A.A. Distributed processing of biomass to biooil for subsequent production of Fischer-Tropsch liquids. Biofuels Bioprod. Bior. 2008, 2, 229–238, doi:10.1002/bbb.73.
[9]  Ringer, M.; Putsche, V.; Scahill, J. Large-scale pyrolysis oil production: A technology assessment and economic analysis. Environ. Sci. 2006, 17, 21–33.
[10]  Czernik, S.; Bridgwater, A.V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 2005, 18, 590–598, doi:10.1021/ef034067u.
[11]  Sombroek, W.G. Amazonian dark earths as carbon stores and sinks. Science 2003, 4, 12–13.
[12]  Erickson, C. Historical Ecology and Future Explorations. In Amazonian Dark Earths: Origin, Properties, Management; Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 45–59.
[13]  Deluca, T.H.; MacKenzie, M.D.; Gundale, M.J. Biochar Effects on Soil Nutrient Transformations. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 137–182.
[14]  Iswaran, V.; Jauhri, K.S.; Sen, A. Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol. Biochem. 1980, 12, 191–192, doi:10.1016/0038-0717(80)90057-7.
[15]  Kishimoto, S.; Sugiura, G. Charcoal as a soil conditioner. Int. Achiev. Future 1985, 5, 12–23.
[16]  Chidumayo, E.N. Phenology and nutrition of miombo woodland trees in Zambia. Trees 1994, 9, 67–72, doi:10.1007/BF00202124.
[17]  Steiner, T.; Mosenthin, R.; Zimmermann, B.; Greiner, R.; Roth, S. Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal products as influenced by harvest year and cultivar. Anim. Feed Sci. Technol. 2007, 133, 320–334, doi:10.1016/j.anifeedsci.2006.04.007.
[18]  Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol. Fert. Soils 2002, 35, 219–230, doi:10.1007/s00374-002-0466-4.
[19]  U.S. Department of Energy (USDOE). Energy Efficiency and Renewable Energy; Bioenergy Service: Washington, DC, USA, 2005.
[20]  Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Change Biol. 2009, 16, 1366–1379.
[21]  French, B.C. Some considerations in estimating assembly cost functions for agricultural processing operations. J. Farm Econ. 1960, 62, 767–778.
[22]  Li, Q.; Racine, J.S. Nonparametric Econometrics: Theory and Practice; Princeton University Press: Princeton, NJ, USA, 2007.
[23]  Ichimura, H. Semiparametric least squares (SLS) and weighted SLS estimation of single index models. J. Econom. 1993, 58, 71–120, doi:10.1016/0304-4076(93)90114-K.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133