全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential of Underutilized Traditional Vegetables and Legume Crops to Contribute to Food and Nutritional Security, Income and More Sustainable Production Systems

DOI: 10.3390/su6010319

Keywords: underutilized traditional vegetables, food and nutritional security, income generation, sustainable production systems, climate change, crop diversification, amaranth, drumstick tree, mungbean

Full-Text   Cite this paper   Add to My Lib

Abstract:

Agriculture is under pressure to produce greater quantities of food, feed and biofuel on limited land resources. Current over-reliance on a handful of major staple crops has inherent agronomic, ecological, nutritional and economic risks and is probably unsustainable in the long run. Wider use of today’s underutilized minor crops provides more options to build temporal and spatial heterogeneity into uniform cropping systems and will enhance resilience to both biotic and abiotic stress. Many traditional vegetables and underutilized legume crops are an essential source of vitamins, micronutrients and protein and, thus, a valuable component to attain nutritional security. Vegetables in general are of considerable commercial value and therefore an important source of household income. Significant research, breeding and development efforts are needed for a range of promising crops to convert existing local landraces into competitive varieties with wide adaptation and promising commercial potential. Access to genetic diversity of these selected crops is a pre-condition for success. Three underutilized minor crops—amaranth, drumstick tree, and mungbean—are highlighted and briefly described. All three crops are well-represented in AVRDC’s genebank with substantial inter- and intra-specific genetic diversity, and already have demonstrated their potential for wider adoption and commercial exploitation.

References

[1]  Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818, doi:10.1126/science.1185383.
[2]  Bruinsma, J. The Resource Outlook to 2050: By How Much do Land, Water and Crop Yields Need to Increase by 2050? In Proceedings of the Technical Meeting of Experts on How to Feed the World in 2050, Rome, Italy, 24–26 June 2009; Food and Agriculture Organization (FAO): Rome, Italy, 2009; pp. 1–33.
[3]  Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264.
[4]  Keyzer, M.A.; Merbis, M.D.; Pavel, I.F.P.W.; van Wesenbeeck, C.F.A. Diet shifts towards meat and the effects on cereal use: Can we feed the animals in 2030? Ecol. Econ. 2005, 55, 187–202, doi:10.1016/j.ecolecon.2004.12.002.
[5]  FAOSTAT. Available online: http://faostat3.fao.org/home/index.html#DOWNLOAD (accessed on 21 November 2013).
[6]  Smil, V. Nitrogen and food production: Proteins for human diets. Ambio 2002, 31, 126–131.
[7]  Pimentel, D.; Marklein, A.; Toth, M.A.; Karpoff, M.N.; Paul, G.S.; McCormack, R.; Kyriazis, J.; Krueger, T. Food versus biofuels: Environmental and economic costs. Hum. Ecol. 2009, 37, 1–12, doi:10.1007/s10745-009-9215-8.
[8]  Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284, doi:10.1126/science.1057544.
[9]  Fischer, R.A.; Edmeades, G.O. Breeding and cereal yield progress. Crop Sci. 2010, 50, S-85–S-98.
[10]  Day, W.; Audsley, E.; Frost, A.R. An engineering approach to modeling, decision support and control for sustainable systems. Philos. Trans. R. Soc. B 2008, 363, 527–541, doi:10.1098/rstb.2007.2168.
[11]  Stern, N. The economics of climate change. Am. Econ. Rev. 2008, 98, 1–37, doi:10.1257/aer.98.2.1.
[12]  Corvalan, C.; Hales, S.; McMichael, A. Ecosystems and Human Well-Being: Health Synthesis. A Report of the Millennium Ecosystem Assessment; World Health Organization: Geneva, Switzerland, 2005.
[13]  United Nations Environment Programme (UNEP). Keeping Track of our Changing Environment: From Rio to Rio+20 (1992–2012). Division of Early Warning and Assessment (DEWA); UNEP: Nariobi, Kenya, 2011; p. 99.
[14]  World Wildlife Fund (WWF). Living Planet Report 2010: Biodiversity, Biocapacity and Development; WWF: Gland, Switzerland, 2010; p. 55.
[15]  Carrière, S.M.; Rodary, E.; Méral, P.; Serpantié, G.; Boisvert, V.; Kuli, C.A.; Lestrelin, G.; Lhoutellier, L.; Moizo, B.; Smektala, G.; et al. Rio+20, biodiversity marginalized. Conserv. Lett. 2013, 6, 6–11, doi:10.1111/j.1755-263X.2012.00291.x.
[16]  Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253, doi:10.3390/su3010238.
[17]  Jackson, L.E.; Pascual, U.; Hodgkin, T. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric. Ecosyst. Environ. 2007, 121, 196–210.
[18]  Juma, C.; Tabo, R.; Wilson, K.; Conway, G. Innovation for Sustainable Intensification in Africa; The Montpellier Panel, Agriculture for Impact: London, UK, 2013. Available online: https://workspace.imperial.ac.uk/africanagriculturaldevelopment/Public/MP_0047_Report_V5_Low-res_singlepages.pdf (accessed on 21 November 2013).
[19]  The Montpellier Panel. Sustainable Intensification: A New Paradigm for African Agriculture; The Montpellier Panel: London, UK, 2013.
[20]  Stamp, P.; Messmer, R.; Walter, A. Competitive underutilized crops will depend on the state funding of breeding programmes: An opinion on the example of Europe. Plant Breed. 2012, 131, 461–464, doi:10.1111/j.1439-0523.2012.01990.x.
[21]  IRRI. The Importance of Rice. Available online: http://www.knowledgebank.irri.org/ericeproduction/Importance_of_Rice.htm (accessed on 21 November 2013).
[22]  Keatinge, J.D.H.; Ledesma, D.R.; Keatinge, F.J.D.; Hughes, J.d’A. Projecting annual air temperature changes to 2025 and beyond: Implications for vegetable horticulture worldwide. J. Agric. Sci. 2012, doi:10.1017/S0021859612000913.
[23]  Newton, A.C.; Johnson, S.N.; Gregory, P.J. Implications of climate change for diseases, crop yields and food security. Euphytica 2011, 179, 3–18, doi:10.1007/s10681-011-0359-4.
[24]  Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193, doi:10.1525/bio.2011.61.3.4.
[25]  Bobojonov, I.; Lamers, J.P.A.; Bekchanov, M.; Djanibekov, N.; Franz-Vasdeki, J.; Ruzimov, J.; Martius, C. Options and constraints for crop diversification: A case study in sustainable agriculture in Uzbekistan. Agroecol. Sustain. Food Syst. 2013, 37, 788–811, doi:10.1080/21683565.2013.775539.
[26]  Liebman, M.Z.; Helmers, M.J.; Schulte, L.A.; Chase, C.A. Using biodiversity to link agricultural productivity with environmental quality: Results from three field experiments in Iowa. Renew. Agric. Food Syst. 2013, 28, 115–128, doi:10.1017/S1742170512000300.
[27]  Kahane, R.; Hodgkin, T.; Jaenicke, H.; Hoogendoorn, C.; Hermann, M.; Keatinge, J.D.H.; Hughes, J.d’A.; Padulosi, S.; Looney, N. Agrobiodiversity for food security, health and income. Agron. Sustain. Dev. 2013, 33, 671–693, doi:10.1007/s13593-013-0147-8.
[28]  Ochatt, S.; Jain, S.M. Breeding of Neglected and Under-Utilized Crops, Spices and Herbs; Science Publishers Inc.: Enfield, NH, USA, 2007.
[29]  Biotechnology of Neglected and Underutilized Crops; Jain, S.M., Gupta, S.D., Eds.; Springer: Berlin, Germany, 2013.
[30]  McCouch, S. Feeding the future. Nature 2013, 499, 23–24, doi:10.1038/499023a.
[31]  Keatinge, J.D.H.; Waliyar, F.; Jamnadass, R.H.; Moustafa, A.; Andrade, M.; Drechsel, P.; Hughes, J. Re-learning old lessons for the future of food—by bread alone no longer: Diversifying diets with fruit and vegetables. Crop Sci. 2010, 50, 51–62, doi:10.2135/cropsci2008.12.0695.
[32]  Keatinge, J.D.H.; Yang, R.-Y.; Hughes, J.d’A.; Easdown, W.J.; Holmer, R. The importance of vegetables in ensuring both food and nutritional security in attainment of the Millennium Development Goals. Food Sci. 2011, 3, 491–501.
[33]  Hughes, J.d’A.; Keatinge, J.D.H. The Nourished Millennium: How Vegetables Put Global Goals for Healthy, Balanced Diets within Reach. In High Value Vegetables in Southeast Asia: Production, Supply and Demand. Proceedings of the SEAVEG 2012 Regional Symposium; Holmer, R., Linwattana, G., Nath, P., Keatinge, J.D.H., Eds.; AVRDC - The World Vegetable Center: Tainan, Taiwan, 2013; pp. 11–26.
[34]  Yang, R.-Y.; Keding, G.B. Nutritional Contributions of Important African Indigenous Vegetables. In African Indigenous Vegetables in Urban Agriculture; Shackleton, C.M., Pasquini, M., Drescher, A.W., Eds.; Earthscan: London, UK, 2009; pp. 105–143.
[35]  Ebert, A.W.; Hidayat, I.M.; de los Santos, E.B. Cultivar Trials of Indigenous Vegetables in Indonesia and Community-Based Seed Conservation and Multiplication in the Philippines. In Proceedings of the 2nd International Symposium on Underutilized Plant Species: Crops for the Future—Beyond Food Security; Massawe, F., Mayes, S., Alderson, P., Eds.; International Society for Horticultural Sciences (ISHS): Korbeek-Lo, Belgium, 2013; Volume 2, pp. 341–348.
[36]  De la Pe?a, R.C.; Ebert, A.W.; Gniffke, P.; Hanson, P.; Symonds, R.C. Genetic Adjustment to Changing Climates: Vegetables. In Crop Adaptation to Climate Change, 1st ed.; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 396–410.
[37]  Hughes, J.d’A.; Ebert, A.W. Research and Development of Underutilized Plant Species: The Role of Vegetables in Assuring Food and Nutritional Security. In Proceedings of the 2nd International Symposium on Underutilized Plant Species: Crops for the Future—Beyond Food Security; Massawe, F., Mayes, S., Alderson, P., Eds.; International Society for Horticultural Sciences (ISHS): Korbeek-Lo, Belgium, 2013; Volume 2, pp. 79–91.
[38]  Maurya, I.B.; Arvindakshan, K.; Sharma, S.K.; Jalwania, R. Status of Indigenous Vegetables in Southern Part of Rajasthan. In Proceedings of the 1st International Conference on Indigenous Vegetables and Legumes—Prospectus for Fighting Poverty, Hunger and Malnutrition; Chadha, M.I., Kuo, G., Gowda, C.L.L., Eds.; International Society for Horticultural Sciences (ISHS): Korbeek-Lo, Belgium, 2007; pp. 193–196.
[39]  Ngigi, M.W.; Okello, J.J.; Lagerkvist, C.L.; Karanja, N.K.; Mburu, J. Urban consumers’ willingness to pay for quality of leafy vegetables along the value chain: The case of Nairobi Kale consumers, Kenya. Int. J. Bus. Soc. Sci. 2011, 2, 209–216.
[40]  Weinberger, K. Are indigenous vegetables underutilized crops? Some evidence from Eastern Africa and Southeast Asia. Acta Hortic. 2007, 752, 29–34.
[41]  AVRDC - The World Vegetable Center. Point of Impact: Healthy Urban Fast Food: A New Maasai Enterprise; AVRDC - The World Vegetable Center: Tainan, Taiwan, 2008.
[42]  AVGRIS—AVRDC. Vegetable Genetic Resources Information System. Available online: http://203.64.245.173/ (accessed on 21 November 2013).
[43]  Dehmer, K.J. Molecular Diversity in the Genus Amaranthus. In Rudolf Mansfeld and Plant Genetic Resources, Schriften zu Genetischen Ressourcen. Zentralstelle für Agrardokumentation und–Information (ZADI); Knüpffer, H., Ochsmann, J., Eds.; Zentralstelle fu?r Agrardokumentation und -Information (ZADI): Bonn, Germany, 2003; pp. 208–215.
[44]  Ebert, A.W.; Wu, T.-H.; Wang, S.-T. International Cooperators’ Guide—Vegetable Amaranth (Amaranthus L.); AVRDC - The World Vegetable Center: Tainan, Taiwan, 2011; p. 8.
[45]  Grubben, G.J.H. Plant Resources of Tropical Africa, Volume 2: Vegetables; Grubben, G.J.H., Denton, O.A., Eds.; Backhuys Publishers: Kerkwerve, The Netherlands, 2004; pp. 84–89.
[46]  Grubben, G.J.H. Amaranthus L. In Plant Resources of South-East Asia. No. 8. Vegetables; Siemonsma, J.S., Piluek, K., Eds.; Prosea Foundation: Bogor, Indonesia, 1994; pp. 82–86.
[47]  Mabulu, R.B.; Chalamila, B.N. Organic vegetable production an alternative income generating activity to the disease effected coconut farming system in Mkuranga District in Tanzania. Afr. Crop Sci. Conf. Proc. 2005, 7, 1539–1544.
[48]  Oluoch, M.O.; Pichop, G.N.; Silué, D.; Abukutsa-Onyango, M.O.; Diouf, M.; Shackleton, C.M. Production and Harvesting Systems for African Indigenous Vegetables. In African Indigenous Vegetables in Urban Agriculture; Shackleton, C.M., Pasquini, M.W., Drescher, A.W., Eds.; Earthscan: London, UK, 2009; pp. 145–176.
[49]  Wang, S.T.; Ebert, A.W. Breeding of Leafy Amaranth for Adaptation to Climate Change. In High Value Vegetables in Southeast Asia: Production, Supply and Demand. Proceedings of the SEAVEG 2012 Regional Symposium; Holmer, R., Linwattana, G., Nath, P., Keatinge, J.D.H., Eds.; AVRDC - The World Vegetable Center: Tainan, Taiwan, 2013; pp. 36–43.
[50]  Kuo, C.G.; Chen, H.M.; Sun, H.C. Membrane Thermostability and Heat Tolerance of Vegetable Leaves. In Adaptation of Food Crops to Temperature and Water Stress; AVRDC - The World Vegetable Center: Tainan, Taiwan, 1992; pp. 160–168.
[51]  Olson, M. The Home Page of the Plant Family Moringaceae. Available online: http://www.mobot.org/gradstudents/olson/moringahome.html (accessed on 21 November 2013).
[52]  Fahey, J.W. Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Phytochemistry 2005, 47, 123–157.
[53]  Duke, J.A. Moringa Oleifera Lam. Available online: http://www.hort.purdue.edu/newcrop/duke_energy/Moringa_oleifera.html (accessed on 21 November 2013).
[54]  Bosch, C.H. Moringa Oleifera Lam. In Plant Resources of Tropical Africa, Volume 2: Vegetables; Grubben, G.J.H., Denton, O.A., Eds.; Backhuys Publishers: Kerkwerve, The Netherlands, 2004; pp. 392–395.
[55]  Ramachandran, C.; Peter, K.V.; Gopalakrishnan, P.K. Drumstick (Moringa oleifera): A multipurpose Indian vegetable. Econ. Bot. 1980, 34, 276–283, doi:10.1007/BF02858648.
[56]  Jilcott, S.B.; Ickes, S.B.; Ammerman, A.S.; Myhre, J.A. Iterative design, implementation and evaluation of a supplemental feeding program for underweight children ages 6–59 months in Western Uganda. Matern. Child Health J. 2010, 14, 299–306, doi:10.1007/s10995-009-0456-3.
[57]  Yang, R.-Y.; Chang, L.-C.; Hsu, J.-C.; Weng, B.B.C.; Palada, M.C.; Chadha, M.L.; Levasseur, V. Nutritional and Functional Properties of Moringa Leaves—From Germplasm, to Plant, to Food, to Health. In Proceedings of the Moringa and other Highly Nutritious Plant Resources: Strategies, Standards and Markets for a Better Impact on Nutrition in Africa, Accra, Ghana, 16–18 November 2006; pp. 1–8.
[58]  Yang, R.-Y.; Tsou, S.C.S.; Lee, T.-C.; Chang, L.-C.; Kuo, G.; Lai, P.-Y. Moringa, a Novel Plant Rich in Antioxidants, Bioavailable Iron, and Nutrients. In Herbs: Challenges in Chemistry and Biology; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2006; Volume 925, pp. 224–239.
[59]  Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51, doi:10.1016/S0031-9422(00)00316-2.
[60]  Bennett, R.N.; Mellon, F.A.; Foidl, N.; Pratt, J.H.; Dupont, M.S.; Perkins, L.; Kroon, P.A. Profiling glucosinulates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 2003, 51, 3546–3553.
[61]  Johnson, T. Glucosinulates: Bioavailability and importance to health. Int. J. Vitam. Nutr. Res. 2002, 72, 26–31, doi:10.1024/0300-9831.72.1.26.
[62]  Ulrichs, C. First results of the glucosinolate analysis of Moringa spp. Humboldt-Universit?t zu Berlin: Berlin, Germany, 2010.
[63]  Burger, D.J.; Fuglie, L.; Herzig, J.W. The Possible Role of Moringa Oleifera in HIV/AIDS Supportive Treatment. In Proceedings of the 14th International Conference on AIDS, Barcelona, Spain, 7–12 July 2002; pp. 7–12.
[64]  Hartwell, J.L. Plants used against cancer. A survey. Lloydia 1969, 32, 78–107.
[65]  Bharali, R.; Tabassum, J.; Azad, M.R.H. Chemomodulatory effect of Moringa oleifera, Lam. on hepatic carcinogen metabolizing enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pac. J. Cancer Prev. 2003, 4, 131–139.
[66]  Jahn, S.A.A.; Musnad, H.A.; Burgstaller, H. The tree that purifies water: Cultivating multipurpose Moringaceae in the Sudan. Unasylva 1986, 38, 23–28.
[67]  Palada, M.C. Moringa (Moringa oleifera Lam.): A versatile tree crop with horticultural potential in the subtropical United States. HortScience 1996, 31, 794–797.
[68]  Polprasid, P. Moringa oleifera Lamk. In PROSEA—Plant Resources of South-East Asia No. 8: Vegetables; Siemonsma, J.S., Piluek, K., Eds.; Prosea Foundation: Bogor, Indonesia, 1996; pp. 213–215.
[69]  Azam, M.M.; Waris, A.; Nahar, N.M. Properties and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg. 2005, 29, 293–302, doi:10.1016/j.biombioe.2005.05.001.
[70]  Rashid, U.; Anwar, F.; Moser, B.R.; Knothe, G. Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 2008, 99, 8175–8179, doi:10.1016/j.biortech.2008.03.066.
[71]  Patricio, H.G.; Palada, M.C.; Ebert, A.W. Adaptability and Horticultural Characterization of Moringa Accessions under Central Philippines Conditions. In High Value Vegetables in Southeast Asia: Production, Supply and Demand. Proceedings of the SEAVEG 2012 Regional Symposium; Holmer, R., Linwattana, G., Nath, P., Keatinge, J.D.H., Eds.; AVRDC - The World Vegetable Center: Shanhua, Tainan, Taiwan, 2013; pp. 61–70.
[72]  Nair, R.M.; Schafleitner, R.; Kenyon, L.; Srinivasan, R.; Easdown, W.; Ebert, A.W.; Hanson, P. Genetic improvement of mungbean. SABRAO J. Breed. Genet. 2012, 44, 177–190.
[73]  Keatinge, J.D.H.; Easdown, W.; Yang, R.-Y.; Chadha, M.; Shanmugasundaram, S. Overcoming chronic malnutrition in a future warming world: The key importance of mungbean and vegetable soybean. Euphytica 2011, 180, 129–141, doi:10.1007/s10681-011-0401-6.
[74]  Weinberger, K. Impact Analysis of Mungbean Research in South and Southeast Asia; AVRDC - The World Vegetable Center: Tainan, Taiwan, 2003.
[75]  Tomooka, N.; Egawa, Y.; Kaga, A. Biosystematics and Genetic Resources of the Genus Vigna Subgenus Ceratotropis. In The Seventh Ministry Of Agriculture, Forestry And Fisheries (MAFF), Japan, International Workshop On Genetic Resources, Ibaraki, Japan, 13–15 October 1999: Part 1, Wild Legumes; Research Council Secretariat of MAFF and National Institute of Agrobiological Resources: Tsukuba, Japan, 2000; pp. 37–62.
[76]  Prakash, V.; Siag, R.K.; Bains, T.S. Genetic Divergence in Indigenous and Exotic Genotypes of Mungbean. In Proceedings of the First International Conference on Indigenous Vegetables and Legumes—Prospectus for Fighting Poverty, Hunger and Malnutrition. ISHS Acta Horticulturae 752; Chadha, M.L., Kuo, G., Gowda, C.L.L., Eds.; International Society for Horticultural Science (ISHS): Korbeek-Lo, Belgium, 2007; pp. 165–168.
[77]  Shanmugasundaram, S.; Keatinge, J.D.H.; Hughes, J.d’A. The Mungbean Transformation: Diversifying Crops, Defeating Malnutrition. In Proven Successes in Agricultural Development: A Technical Compendium to Millions Fed. IFPRI Discussion Paper 00922; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009.
[78]  Chadha, M.L. Short Duration Mungbean: A New Success in South Asia; Asia-Pacific Association of Agricultural Research Institutions (APAARI): Bangkok, Thailand, 2010.
[79]  Shanmugasundaram, S. New breakthrough with mungbean. Centerpoint 2001, 19, 1–2.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133