全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Symmetry  2014 

Peripheral Contour Grouping and Saccade Targeting: The Role of Mirror Symmetry

DOI: 10.3390/sym6010001

Keywords: contours, eye movements, figure-ground organization, perceptual grouping, symmetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Integrating shape contours in the visual periphery is vital to our ability to locate objects and thus make targeted saccadic eye movements to efficiently explore our surroundings. We tested whether global shape symmetry facilitates peripheral contour integration and saccade targeting in three experiments, in which observers responded to a successful peripheral contour detection by making a saccade towards the target shape. The target contours were horizontally (Experiment 1) or vertically (Experiments 2 and 3) mirror symmetric. Observers responded by making a horizontal (Experiments 1 and 2) or vertical (Experiment 3) eye movement. Based on an analysis of the saccadic latency and accuracy, we conclude that the figure-ground cue of global mirror symmetry in the periphery has little effect on contour integration or on the speed and precision with which saccades are targeted towards objects. The role of mirror symmetry may be more apparent under natural viewing conditions with multiple objects competing for attention, where symmetric regions in the visual field can pre-attentively signal the presence of objects, and thus attract eye?movements.

References

[1]  Barlow, H.B.; Reeves, B.C. The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vis. Res.?1979, 19, 783–793.
[2]  Corballis, M.C.; Roldan, C.E. On the perception of symmetrical and repeated patterns. Percept. Psychophys.?1974, 16, 136–142.
[3]  Feldman, J. Formation of visual “objects” in the early computation of spatial relations. Percept. Psychophys.?2007, 69, 816–827.
[4]  Locher, P.J.; Wagemans, J. Effects of element type and spatial grouping on symmetry detection. Perception?1993, 22, 565–587.
[5]  Mach, E. Contributions to the Analysis of the Sensations; Open Court: LaSalle, IL, USA, 1897.
[6]  Herbert, A.M.; Humphrey, G.K. Bilateral symmetry detection: Examining a “callosal” hypothesis. Perception?1996, 25, 463–480.
[7]  Treder, M.S. Behind the looking-glass: A review on human symmetry perception. Symmetry?2010, 2, 1510–1543.
[8]  Van der Helm, P.A. Symmetry perception. In Oxford Handbook of Perceptual Organization; Wagemans, J., Ed.; Oxford University Press: Oxford, UK, 2014. in press.
[9]  Wagemans, J. Characteristics and models of human symmetry detection. Trends Cogn. Sci.?1997, 1, 346–352.
[10]  Wagemans, J.; Elder, J.H.; Kubovy, M.; Palmer, S.E.; Peterson, M.A.; Singh, M.; von der Heydt, R. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol. Bull.?2012, 138, 1172–1217.
[11]  Biederman, I. Recognition-by-components: A theory of human image understanding. Psychol. Rev.?1987, 94, 115–147.
[12]  Biederman, I. Recognizing depth-rotated objects: A review of recent research and theory. Spat. Vis.?2001, 13, 241–253.
[13]  Sawada, T.; Pizlo, Z. Detection of skewed symmetry. J. Vis.?2008, 8, 1–18.
[14]  Wagemans, J. Perceptual use of nonaccidental properties. Can. J. Psychol.?1992, 46, 236–279.
[15]  Wagemans, J. Skewed symmetry: A nonaccidental property used to perceive visual forms. J. Exp. Psychol. Human?1993, 19, 364–380.
[16]  Wertheimer, M. Investigations on Gestalt principles. In On Perceived Motion and Figural Organization; Spillman, L., Wertheimer, M., Eds.; MIT Press: London, UK, 2012; pp. 127–183. Original work published in 1923; Translated by Wertheimer, M., Watkins, K.W.
[17]  Bahnsen, P. Eine Untersuchung über Symmetrie und Asymmetrie bei visuellen Wahrnehmungen. Z. Psychol.?1928, 108, 129–154. In German.
[18]  Machilsen, B.; Pauwels, M.; Wagemans, J. The role of vertical mirror symmetry in visual shape detection. J. Vis.?2009, 9, 1–11.
[19]  Bex, P.J.; Simmers, A.J.; Dakin, C. Snakes and ladders: The role of temporal modulation in visual contour integration. Vis. Res.?2001, 41, 3775–3782.
[20]  Dakin, S.C.; Baruch, N.J. Context influences contour integration. J. Vis.?2009, 9, 1–13.
[21]  Field, D.J.; Hayes, A.; Hess, R.F. Contour integration by the human visual system: Evidence for a local “association field”. Vis. Res.?1993, 33, 173–193.
[22]  Hess, R.F.; Beaudot, W.H.A.; Mullen, K.T. Dynamics of contour integration. Vis. Res.?2001, 41, 1023–1037.
[23]  Hess, R.F.; May, K.A.; Dumoulin, S.O. Oxford Handbook of Perceptual Organization; Wagemans, J., Ed.; Oxford University Press, 2014. in press.
[24]  Mathes, B.; Fahle, M. Closure facilitates contour integration. Vis. Res.?2007, 47, 818–827.
[25]  Tversky, T.; Geisler, W.S.; Perry, J.S. Contour grouping: Closure effects are explained by good continuation and proximity. Vis. Res.?2004, 44, 2769–2777.
[26]  Gurnsey, R.; Herbert, A.M.; Kenemy, J. Bilateral symmetry embedded in noise is detected accurately only at fixation. Vis. Res.?1998, 38, 3795–3803.
[27]  Tyler, C.W.; Hardage, L. Mirror symmetry detection: Predominance of second-order pattern processing throughout the visual field. In Human Symmetry Perception and Its Computational Analysis; Tyler, C., Ed.; VSP (Brill imprint): Leiden, The Netherlands, 1996; pp. 151–171.
[28]  Saarinen, J.; Rovamo, J.; Virsu, V. Analysis of spatial structure in eccentric vision. Invest. Ophth. Vis. Sci.?1989, 30, 293–296.
[29]  Sally, S.; Gurnsey, R. Symmetry detection across the visual field. Spat. Vis.?2001, 14, 217–234.
[30]  Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal.?1998, 20, 1254–1259.
[31]  Kootstra, G.; de Boer, B.; Schomaker, L.R.B. Predicting eye fixations on complex visual stimuli using local symmetry. Cogn. Comput.?2011, 3, 1–18.
[32]  Demeyer, M.; Machilsen, B. The construction of perceptual grouping displays using GERT. Behav. Res. Methods?2012, 44, 439–446.
[33]  Brainard, D.H. The Psychophysics Toolbox. Spat. Vis.?1997, 10, 433–436.
[34]  Kleiner, M.; Brainard, D.; Pelli, D. What's new in Psychtoolbox-3? Perception?2007, 36. ECVP Abstract Supplement 14.
[35]  Pelli, D.G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat. Vis.?1997, 10, 437–442.
[36]  Abrams, R.A.; Meyer, D.E.; Kornblum, S. Speed and accuracy of saccadic eye movements: Characteristics of impulse variability in the oculomotor system. J. Exp. Psychol. Human?1989, 15, 529–543.
[37]  Zusne, L. Visual Perception of Form; Academic Press: New York, NY, USA, 1970.
[38]  Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-Plus; Springer: New York, NY, USA, 2000.
[39]  Kapoula, Z. Evidence for a range effect in the saccadic system. Vis. Res.?1985, 25, 1155–1157.
[40]  Kapoula, Z.; Robinson, D.A. Saccadic undershoot is not inevitable: Saccades can be accurate. Vis. Res.?1986, 26, 735–743.
[41]  Bindemann, M.; Scheepers, C.; Burton, A.M. Viewpoint and center of gravity affect eye movements to human faces. J. Vis.?2009, 9, 1–16.
[42]  Findlay, J.M. Global visual processing for saccadic eye-movements. Vis. Res.?1982, 22, 1033–1045.
[43]  Kaufman, L.; Richards, W. Spontaneous fixation tendencies for visual forms. Percept. Psychophys.?1969, 5, 85–88.
[44]  Kowler, E.; Blaser, E. The accuracy and precision of saccades to small and large targets. Vis. Res.?1995, 35, 1741–1754.
[45]  Wagemans, J. Detection of visual symmetries. Spat. Vis.?1995, 9, 9–32.
[46]  Sassi, M.; Vancleef, K.; Machilsen, B.; Panis, S.; Wagemans, J. Identification of everyday objects on the basis of Gaborized outline versions. i-Perception?2010, 1, 121–142.
[47]  Sassi, M.; Machilsen, B.; Wagemans, J. Shape detection of Gaborized outline versions of everyday objects. i-Perception?2012, 3, 745–764.
[48]  Kondo, M.; Araragi, Y.; Nakamizo, S. New equally readable charts based on anisotropy of peripheral visual acuity. Jpn. Psychol. Res.?2008, 50, 93–99.
[49]  Rosa, M.G.P.; Fritsches, K.A.; Elston, G.N. The second visual area in the marmoset monkey: Visuotopic organization, magnification factors, architectonal boundaries, and modularity. J. Comp. Neurol.?1997, 387, 547–567.
[50]  Van Essen, D.C.; Newsome, W.T.; Maunsell, J.H. The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vis. Res.?1984, 24, 429–448.
[51]  Hess, R.F.; Dakin, S.C. Contour integration in the peripheral field. Vis. Res.?1999, 39, 947–959.
[52]  Collewijn, H.; Erkelens, C.J.; Steinman, R.M. Binocular co-ordination of human vertical saccadic eye movements. J. Physiol.?1988, 404, 183–197.
[53]  Driver, J.; Baylis, G.; Rafal, R. Preserved figure-ground segregation and symmetry perception in visual neglect. Nature?1992, 360, 73–75.
[54]  Peterson, M.A.; Gibson, B.S. Must figure-ground organization precede object recognition? An assumption in peril. Psychol. Sci.?1994, 5, 253–259.
[55]  Kanizsa, G.; Gerbino, W. Convexity and symmetry in figure-ground organization. In Vision and Artefact; Henle, M., Ed.; Springer: New York, NY, USA, 1976; pp. 25–32.
[56]  Froyen, V.; Feldman, J.; Singh, M. Rotating columns: Relating structure-from-motion, accretion/deletion, and figure/ground. J. Vis.?2013, 13, 1–12.
[57]  A?ik, A.; Onat, S.; Schumann, F.; Einh?user, W.; K?nig, P. Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories. Vis. Res.?2009, 49, 1541–1553.
[58]  Machilsen, B.; Demeyer, M.; Wagemans, J. Peripheral contour integration is biased towards convex contours. Perception?2013, 42. ECVP Abstract Supplement 115.
[59]  Sassi, M.; Demeyer, M.; Machilsen, B.; Putzeys, T.; Wagemans, J. The role of familiarity and predictability in contour grouping. Perception?2013, 42 ECVP Abstract Supplement 113.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413