The timing patterns of animal gaits are produced by a network of spinal neurons called a Central Pattern Generator (CPG). Pinto and Golubitsky studied a four-node CPG for biped dynamics in which each leg is associated with one flexor node and one extensor node, with Ζ 2 x Ζ 2 symmetry. They used symmetric bifurcation theory to predict the existence of four primary gaits and seven secondary gaits. We use methods from symmetric bifurcation theory to investigate local bifurcation, both steady-state and Hopf, for their network architecture in a rate model. Rate models incorporate parameters corresponding to the strengths of connections in the CPG: positive for excitatory connections and negative for inhibitory ones. The three-dimensional space of connection strengths is partitioned into regions that correspond to the first local bifurcation from a fully symmetric equilibrium. The partition is polyhedral, and its symmetry group is that of a tetrahedron. It comprises two concentric tetrahedra, subdivided by various symmetry planes. The tetrahedral symmetry arises from the structure of the eigenvalues of the connection matrix, which is involved in, but not equal to, the Jacobian of the rate model at bifurcation points. Some of the results apply to rate equations on more general networks.
References
[1]
Gambaryan, P. How Mammals Run: Anatomical Adaptations; Wiley: New York, NY, USA, 1974.
[2]
Muybridge, E. Animals in Motion.
[3]
McGhee, R.B. Some finite state aspects of legged locomotion. Math. Biosci.?1968, 2, 67–84, doi:10.1016/0025-5564(68)90007-2.
[4]
Hildebrand, M. Vertebrate locomotion, an introduction: How does an animal's body move itself along? BioScience?1989, 39, 764–765, doi:10.1093/bioscience/39.11.764.
[5]
Kopell, N. Towards a Theory of Modelling Central Pattern Generators. In Neural Control of Rhythmic Movements in Vertebrates; Cohen, A.H., Rossignol, S., Grillner, S., Eds.; Wiley: New York, NY, USA, 1988.
[6]
Kopell, N.; Ermentrout, G.B. Symmetry and phaselocking in chains of weakly coupled oscillators. Commun. Pure Appl. Math.?1986, 39, 623–660, doi:10.1002/cpa.3160390504.
[7]
Kopell, N.; Ermentrout, G.B. Coupled oscillators and the design of central pattern generators. Math. Biosci.?1988, 89, 14–23.
[8]
Kopell, N.; Ermentrout, G.B. Phase transitions and other phenomena in chains of oscillators. SIAM J. Appl. Math.?1990, 50, 1014–1052, doi:10.1137/0150062.
[9]
Collins, J.J.; Stewart, I. Symmetry-breaking bifurcation: A possible mechanism for 2:1 frequency-locking in animal locomotion. J. Math. Biol.?1992, 30, 827–838. 1431615
[10]
Collins, J.J.; Stewart, I. Hexapodal gaits and coupled nonlinear oscillator models. Biol. Cybern.?1993, 68, 287–298, doi:10.1007/BF00201854.
[11]
Collins, J.J.; Stewart, I. Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci.?1993, 3, 349–392, doi:10.1007/BF02429870.
[12]
Collins, J.J.; Stewart, I. A group-theoretic approach to rings of coupled biological oscillators. Biol. Cybern.?1994, 71, 95–103, doi:10.1007/BF00197312. 8068779
[13]
Hassard, B.D.; Kazarinoff, N.D.; Wan, Y.-H. Theory and Applications of Hopf Bifurcation; London Mathematical Society Lecture Note Series 41; Cambridge University Press: Cambridge, UK, 1981.
[14]
Buono, P.-L. A Model of Central Pattern Generators for Quadruped Locomotion. Ph.D. Thesis, University of Houston, Houston, TX, USA, 1998.
[15]
Buono, P.-L. Models of central pattern generators for quadruped locomotion: II. Secondary gaits. J. Math. Biol.?2001, 42, 327–346, doi:10.1007/s002850000073. 11374123
[16]
Buono, P.-L.; Golubitsky, M. Models of central pattern generators for quadruped locomotion: I. Primary gaits. J. Math. Biol.?2001, 42, 291–326, doi:10.1007/s002850000058. 11374122
[17]
Golubitsky, M.; Stewart, I. The Symmetry Perspective, Progress in Mathematics 200; Birkh?user: Basel, Switzerland, 2002.
[18]
Golubitsky, M.; Stewart, I.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory II; Applied Mathematics Series 69; Springer: New York, NY, USA, 1988.
[19]
Golubitsky, M.; Stewart, I.; Buono, P.-L.; Collins, J.J. A modular network for legged locomotion. Physica D?1998, 115, 56–72, doi:10.1016/S0167-2789(97)00222-4.
[20]
Golubitsky, M.; Stewart, I.; Collins, J.J.; Buono, P.-L. Symmetry in locomotor central pattern generators and animal gaits. Nature?1999, 401, 693–695, doi:10.1038/44416. 10537106
[21]
Pinto, C.A.; Golubitsky, M. Central pattern generators for bipedal locomotion. J. Math. Biol.?2006, 53, 474–489, doi:10.1007/s00285-006-0021-2. 16874500
[22]
Golubitsky, M.; Stewart, I. Nonlinear dynamics of networks: The groupoid formalism. Bull. Am. Math. Soc.?2006, 43, 305–364, doi:10.1090/S0273-0979-06-01108-6.
[23]
Golubitsky, M.; Stewart, I.; T?r?k, A. Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst.?2005, 4, 78–100, doi:10.1137/040612634.
[24]
Stewart, I.; Golubitsky, M.; Pivato, M. Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst.?2003, 2, 609–646, doi:10.1137/S1111111103419896.
[25]
Diekman, C.; Golubitsky, M.; Wang, Y. Derived patterns in binocular rivalry networks. J. Math. Neuro.?2013, 3, doi:10.1186/2190-8567-3-6.
[26]
Curtu, R. Mechanisms for oscillations in a biological competition model. Proc. Appl. Math. Mech.?2007, 7, doi:10.1002/pamm.20070331.
[27]
Curtu, R. Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network. Physica D?2010, 239, 504–514, doi:10.1016/j.physd.2009.12.010.
[28]
Curtu, R.; Shpiro, A.; Rubin, N.; Rinzel, J. Mechanisms for frequency control in neuronal competition models. SIAM J. Appl. Dyn. Syst.?2008, 7, 609–649, doi:10.1137/070705842. 20953287
[29]
Poston, T.; Stewart, I. Catastrophe Theory and Its Applications; Surveys and Reference Works in Mathematics 2; Pitman: London, UK, 1978.
Wilson, H.R. Computational evidence for a rivalry hierarchy in vision. Proc. Natl. Acad. Sci. USA?2003, 100, 14499–14503, doi:10.1073/pnas.2333622100. 14612564
[32]
Laing, C.R.; Chow, C.C. A spiking neuron model for binocular rivalry. J. Comput. Neurosci.?2002, 12, 39–53, doi:10.1023/A:1014942129705. 11932559
[33]
Shpiro, A.; Curtu, R.; Rinzel, J.; Rubin, N. Dynamical characteristics common to neuronal competition models. J. Neurophysiol.?2007, 97, 462–473, doi:10.1152/jn.00604.2006. 17065254
[34]
Wilson, H.R. Requirements for Conscious Visual Processing. In Cortical Mechanisms of Vision; Jenkin, M., Harris, L., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 399–417.
[35]
Diekman, C.; Golubitsky, M. Algorithm for Constructing and Analyzing Wilson Networks for Binocular Rivalry Experiments; MBI: Columbus, OH, USA, 2014. in press.
[36]
Diekman, C.; Golubitsky, M.; McMillen, T.; Wang, Y. Reduction and dynamics of a generalized rivalry network with two learned patterns. SIAM J. Appl. Dyn. Syst.?2012, 11, 1270–1309, doi:10.1137/110858392.
[37]
Diekman, C.; Golubitsky, M.; Stewart, I. Modelling visual illusions using generalised Wilson networks; Mathematics Institute, University of Warwick: Coventry, UK. Unpublished work, 2013.
[38]
Golubitsky, M.; Stewart, I. Hopf bifurcation in the presence of symmetry. Arch. Ration. Mech. Anal.?1985, 87, 107–165, doi:10.1007/BF00280698.
[39]
Cicogna, G. Symmetry breakdown from bifurcations. Lett. Nuovo Cimento?1981, 31, 600–602, doi:10.1007/BF02777979.
[40]
Vanderbauwhede, A. Local Bifurcation and Symmetry. Habilitation Thesis, Rijksuniversiteit Gent, Gent, Belgium, 1980.
[41]
Vanderbauwhede, A. Local Bifurcation and Symmetry Research Notes in Mathematics Series 75; Pitman: London, UK, 1982.
[42]
Adams, J.F. Lectures on Lie Groups; University of Chicago Press: Chigago, IL, USA, 1969.
[43]
Rotman, J.J. An Introduction to the Theory of Groups; Allyn and Bacon: Boston, TX, USA, 1984.
[44]
Hall, M., Jr. The Theory of Groups; Macmillan: New York, NY, USA, 1959.
[45]
Loney, S.L. The Elements of Coordinate Geometry; Macmillan: London, UK, 1960.
[46]
Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences; Springer: New York, NY, USA, 1990; Vol. 42.