全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Systems  2013 

Emergence as Mesoscopic Coherence

DOI: 10.3390/systems1040050

Keywords: clustering, collective beings, emergence, ideal and non-ideal models for complex systems, mesoscopic level of system description, quasi-ergodic behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose here a formal approach to study collective behaviors intended as coherent sequences of spatial configurations, adopted by agents through various corresponding structures over time. Multiple, simultaneous structures over time and their sequences are called Meta-Structures and establish sequences of spatial configurations considered as emergent on the basis of coherent criteria chosen and detected by an observer. This coherence is represented by patterns of values of the proper mesoscopic variables adopted, i.e., meta-structural properties. We introduce a formal tool, i.e., the family of mesoscopic general vectors, defined by the observer, able to detect coherent behaviors like ergodic or quasi-ergodic ones. Such approach aims to provide a general framework to study intrinsically stochastic processes where the “universal evolution laws” fail. However, at the same, the system is structured enough to show significant clusters of collective behaviors “invisible to” simple statistics.

References

[1]  Attanasi, A.; Cavagna, A.; del Castello, L.; Giardina, I.; Grigera, T.S.; Jeli?, A.; Melillo, S.; Parisi, L.; Pohl, O.; Shen, E.; et al. Superfluid Transport of Information in Turning Flocks of Starlings. Available online: http://arxiv.org/abs/1303.7097 (accessed on 22 September 2013).
[2]  Licata, I. Almost-anywhere theories: Reductionism and universality of emergence. Complexity 2010, 15, 11–19.
[3]  Pessa, E. Physical and Biological Emergence: Are They Different? In Systemics of Emergence. Research and Development; Minati, G., Pessa, E., Abram, M., Eds.; Springer: Berlin, Germany, 2006; pp. 355–374.
[4]  Pessa, E. Phase Transitions in Biological Matter. In Physics of Emergence and Organization; Licata, I., Sakaji, A., Eds.; World Scientific: Singapore, 2008; pp. 165–228.
[5]  Giuliani, A.; Zbilut, J. The Latent Order of Complexity; NovaScience: New York, NY, USA, 2008.
[6]  Krause, J. Ruxton GD (2002) Living in Groups; Oxford University Press: New York, NY, USA, 2002.
[7]  Newman, M. Networks: An Introduction; Oxford University Press: New York, NY, USA, 2010.
[8]  Kadushin, C. Understanding Social Networks: Theories, Concepts, and Findings; Oxford University Press: New York, NY, USA, 2011.
[9]  Viswanathan, G.M.; da Luz, M.G.E.; Raposo, E.P.; Stanley, H.E. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters; Cambridge University Press: Cambridge, UK, 2011.
[10]  Vicsek, T.; Zafeiris, A. Collective Motion. Available online: http://arxiv.org/abs/1010.5017 (accessed on 22 September 2013).
[11]  Laughlin, R.B.; Pines, D.; Schmalian, J.; Stojkovic, B.P.; Wolynes, P. The middle way. Proc. Natl. Acad. Sci. USA 2000, 97, 32–37, doi:10.1073/pnas.97.1.32.
[12]  Haken, H. Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices; Springer: New York, NY, USA, 1983.
[13]  Minati, G.; Licata, I.; Pessa, E. Meta-Structures: The Search of Coherence in Collective Behaviours without Physics. Available online: http://arxiv.org/abs/1305.0206 (accessed on 22 September 2013).
[14]  Minati, G. New Approaches for Modelling Emergence of Collective Phenomena; Polimetrica: Milan, France, 2008.
[15]  Minati, G.; Licata, I. Meta-structural properties in collective behaviors. Int. J. Gen. Syst. 2012, 41, 289–311, doi:10.1080/03081079.2011.651136.
[16]  Cruchtfield, J.P. The calculi of emergence: Computation, dynamics and induction. Phys. D 1994, 75, 11–54, doi:10.1016/0167-2789(94)90273-9.
[17]  Licata, I.; Minati, G. Creativity as Cognitive Design: The Case of Mesoscopic Variables in Meta-Structures. In Creativity: Fostering, Measuring and Contexts; Corrigan, A., Ed.; NovaScience: New York, NY, USA, 2010; pp. 95–108.
[18]  Goldstein, J. Emergence as a construct: History and issues. Emergence 1999, 1, 49–72, doi:10.1207/s15327000em0101_4.
[19]  Ronald, E.M.A.; Sipper, M.; Capcarrere, M.S. Design, observation, surprise! A test foremergence. Artif. Life 1999, 5, 225–239, doi:10.1162/106454699568755.
[20]  Ryan, A.J. Emergence is coupled to scope, not level. Complexity 2006, 67, 67–77.
[21]  Minati, G.; Pessa, E. Collective Beings; Springer: New York, NY, USA, 2006.
[22]  Minati, G. Emergence and Ergodicity: A Line of Research. In Emergence in Complex, Cognitive, Social and Biological Systems; Minati, G., Pessa, E., Eds.; Kluwer: New York, NY, USA, 2002; pp. 85–102.
[23]  Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I.; Lecomte, V.; Orlandi, A.; Parisi, G.; Procaccini, A.; et al. Interaction ruling animal collectivebehavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA 2007, 105, 1232–1237.
[24]  Pessa, E. Towards a General Theory of Change. In Processes of Emergence of Systems and Systemic Properties. Toward a General Theory of Emergence; Minati, G., Abram, M., Pessa, E., Eds.; World Scientific: Singapore, 2009; pp. 603–623.
[25]  Thaler, S.L. The creativity machine paradigm: Withstanding the argument from consciousness, the American philosophical association. Newslett. Philos. Computers 2012, 11, 19–30.
[26]  Pessa, E. On Models of Emergent Metastructures. In Methods, Models, Simulations and Approaches towards a General Theory of Change; Minati, G., Abram, M., Pessa, E., Eds.; World Scientific: Singapore, 2012; pp. 113–134.
[27]  Resconi, G.; Nikravesh, M. Morphic Computing. In Theoretical Advances and Applications of Fuzzy Logic and Soft Computing Advances in Soft Computing; Springer: New York, NY, USA, 2007; Volume 42, pp. 180–189.
[28]  Resconi, I.; Licata, I. Information as Environment Changings-Classical and Quantum Morphic Computation. In Methods, Models, Simulations and Approaches towards a General Theory of Change; Minati, G., Abram, M., Pessa, E., Eds.; World Scientific: Singapore, 2012; pp. 47–81.
[29]  Blasone, M.; Jizba, P.; Vitiello, G. Quantum Field Theory and Its Macroscopic Manifestations; Imperial College Press: London, UK, 2011.
[30]  Licata, I. Emergence and Computation at the Edge of Classical and Quantum Systems. In Physics of Emergence and Organization; Licata, I., Sakaji, A., Eds.; World Scientific: Singapore, 2008; pp. 1–25.
[31]  Licata, I. Living with Radical Uncertainty. The Exemplary Case of Folding Protein. In Crossing in Complexity: Interdisciplinary Application of Physics in Biological and Social Systems; Licata, I., Sakaji, A., Eds.; NovaScience: New York, NY, USA, 2010; pp. 1–9.
[32]  Licata, I. Logical openness in cognitive models. Epistemologia 2008, 31, 177–192.
[33]  Licata, I. Seeing by Models; Vision as Adaptive Epistemology. In Methods, Models, Simulations and Approaches towards a General Theory of Change; Minati, G., Abram, M., Pessa, E., Eds.; World Scientific: Singapore, 2012; pp. 385–400.
[34]  Hirst, L.S. Fundamentals of Soft Matter Science; CRC Press: Boca Raton, FL, USA, 2012.
[35]  Bunde, A.; Havlin, S. Fractals and Disordered Systems; Springer: New York, NY, USA, 2012.
[36]  Newman, M.; Barabasi, A.-L.; Watts, D.J. The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2006.
[37]  Wolfram, S. A New Kind of Science; Wolfram Media Inc.: Champaign, IL, USA, 2002.
[38]  Schroeder, M. Fractals, Chaos, Power Laws:Minutes from an Infinite Paradise; Dover Publications Inc.: New York, NY, USA, 2009.
[39]  Bizzarri, M.; Palombo, A.; Cucina, A. Theoretical aspects of systems biology. Prog. Biophys. Mol. Biol. 2013, 112, 33–43, doi:10.1016/j.pbiomolbio.2013.03.019.
[40]  Panin, G. Model—Based Visual Tracking. The OpenTL Framework; John Wiley & Sons: Hoboken, NJ, USA, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413