An experimental assessment of personal exposure to PM 10 in 59 office workers was carried out in Dublin; Ireland. Two hundred and fifty five samples of 24 hour personal exposure were collected in real time over a 28 month period. The investigation included an assessment of the uptake of pollutants in the lungs during various daily activities using a Human Respiratory Tract Model. The results of the investigation showed that indoor air quality was the overriding determinant of average daily personal exposure as participants in the study spent over 92% of their time indoors. Exposure in the workplace and exposure at home were the most important microenvironments in total uptake of particulate matter. Exposure while commuting or shopping were found to play a minor role in comparison. The investigation highlighted the importance of considering pollutant uptake as well as personal exposure among receptors where variations in levels of physical activity and duration of exposure are present.
Gauderman, W.J.; Avol, E.; Gilliland, F.; Vora, H.; Thomas, D.; Berhane, K.; McConnell, R.; Kuenzli, N.; Lurmann, F.; Rappaport, E.; et al. The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 2004, 351, 1057–1067, doi:10.1056/NEJMoa040610.
[3]
Neuberger, M.; Schimek, M.G.; Horak, F.; Moshammer, H.; Kundi, M.; Frischer, T.; Gomiscek, B.; Puxbaum, H.; Hauck, H. Acute effects of particulate matter on respiratory diseases, symptoms and functions: Epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP). Atmos. Environ. 2004, 38, 3971–3981.
[4]
Adams, H.S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmos. Environ. 2001, 35, 4557–4566.
[5]
O’Donoghue, R.T.; Gill, L.W.; McKevitt, R.J.; Broderick, B.M. Exposure to hydrocarbon concentrations while commuting or exercising in Dublin. Environ. Int. 2007, 33, 1–8, doi:10.1016/j.envint.2006.05.005.
[6]
Oberd?rster, G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 2000, 74, 1–8, doi:10.1007/s004200000185.
[7]
Michaels, R.A.; Kleinman, M.T. Incidence and apparent health significance of brief airborne particle excursions. Aerosol Sci. Technol. 2000, 32, 93–105, doi:10.1080/027868200303803.
[8]
McNabola, A.; Broderick, B.M.; Gill, L.W. Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: Personal exposure and uptake. Atmos. Environ. 2008, 42, 6496–6512, doi:10.1016/j.atmosenv.2008.04.015.
[9]
Koistinen, K.J.; H?nninen, O.; Rotko, T.; Edwards, R.D.; Moschandreas, D.; Jantunen, M.J. Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS—Helsinki, Finland. Atmos. Environ. 2001, 35, 2473–2481, doi:10.1016/S1352-2310(00)00446-5.
[10]
Branis, M.; Kolomazníková, J. Year-long continuous personal exposure to PM2.5 recorded by a fast responding portable nephelometer. Atmos. Environ. 2010, 44, 2865–2872, doi:10.1016/j.atmosenv.2010.04.050.
[11]
Abdullahi, K.L.; Delgado-Saborit, J.M.; Harrison, R.M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review. Atmos. Environ. 2013, 71, 260–294, doi:10.1016/j.atmosenv.2013.01.061.
[12]
Fang, S.C.; Cassidy, A.; Christiani, D.C. A systematic review of occupational exposure to particulate matter and cardiovascular disease. Int. J. Environ. Res. Public Health 2010, 7, 1773–1806, doi:10.3390/ijerph7041773.
[13]
Magari, S.R.; Hauser, R.; Schwartz, J.; Williams, P.L.; Smith, T.J.; Christiani, D.C. Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation 2001, 104, 986–991, doi:10.1161/hc3401.095038.
[14]
Kumar, N.; Chu, A.; Foster, A. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 2007, 41, 4492–4503, doi:10.1016/j.atmosenv.2007.01.046.
[15]
ICRP. Human Respiratory Tract Model for Radiological Protection: A Report of a Task Group of the International Commission on Radiological Protection; Pergamon Press: Oxford, UK, 1994.
[16]
Jans, M.P.; Proper, K.I.; Hildebrandt, V.H. Sedentary behavior in Dutch workers: Differences between occupations and business sectors. Am. J. Prev. Med. 2007, 33, 450–454, doi:10.1016/j.amepre.2007.07.033.
[17]
Nasir, Z.A.; Colbeck, I. Particulate pollution in different houseing types in a UK suburban location. Sci. Total Environ. 2013, 445–446, 165–176, doi:10.1016/j.scitotenv.2012.12.042.
[18]
Borgini, A.; Tittarelli, A.; Ricci, C.; Bertoldi, M.; de Saeger, E.; Crosignani, P. Personal exposure to PM2.5 among high-school students in Milan and background measurements: The EuroLifeNet study. Atmos. Environ. 2011, 45, 4147–4151, doi:10.1016/j.atmosenv.2011.05.026.
[19]
Clancy, L.; Goodman, P.; Sinclair, H.; Dockery, D.W. Effect of air-pollution control on death rates in Dublin, Ireland: An intervention study. Lancet 2002, 360, 1210–1214.
[20]
Hsu, S.-I.; Ito, K.; Kendall, M.; Lippman, M. Factors affecting personal exposure to thoracic and fine particles and their components. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 439–447, doi:10.1038/jes.2012.23.
[21]
Koistinen, K.J.; Kosua, A.; Tenhol, V.; H?nninen, O.; Jantunten, M.J.; Oglesby, L.; Kuenzli, N.; Georgoulis, L. Fine particle (PM2.5) measurement methodology, quality assurance procedure and pilot results of the EXPOLIS study. J. Air Waste Manag. Association 1999, 49, 1212–1220, doi:10.1080/10473289.1999.10463916.
[22]
Chakrabarti, B.; Fine, P.M.; Delfino, R.; Sioutas, C. Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. Atmos. Environ. 2004, 38, 3329–3340, doi:10.1016/j.atmosenv.2004.03.007.