全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2014 

Novel Class of Potential Therapeutics that Target Ricin Retrograde Translocation

DOI: 10.3390/toxins6010033

Keywords: ricin toxin, small molecule inhibitors, high-content screen, retrograde translocation, stabilization, dislocation, egfp, ribosome-inactivating protein

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB) followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA) is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTA E177Qegfp) to identify compounds that target RTA retrograde translocation. Stabilizing RTA E177Qegfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds) with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

References

[1]  Sandvig, K.; Torgersen, M.L.; Engedal, N.; Skotland, T.; Iversen, T.G. Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett. 2010, 584, 2626–2634, doi:10.1016/j.febslet.2010.04.008.
[2]  Endo, Y.; Tsurugi, K.; Yutsudo, T.; Takeda, Y.; Ogasawara, T.; Igarashi, K. Site of action of a Vero toxin (VT2) from escherichia coli O157:H7 and of shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 1988, 171, 45–50.
[3]  Szewczak, A.A.; Moore, P.B.; Chang, Y.L.; Wool, I.G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc. Natl. Acad. Sci. USA 1993, 90, 9581–9585, doi:10.1073/pnas.90.20.9581.
[4]  Sandvig, K.; Grimmer, S.; Lauvrak, S.U.; Torgersen, M.L.; Skretting, G.; Van Deurs, B.; Iversen, T.G. Pathways followed by ricin and shiga toxin into cells. Histochem. Cell. Biol. 2002, 117, 131–141, doi:10.1007/s00418-001-0346-2.
[5]  Li, S.; Spooner, R.A.; Allen, S.C.; Guise, C.P.; Ladds, G.; Schnoder, T.; Schmitt, M.J.; Lord, J.M.; Roberts, L.M. Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum. Mol. Biol. Cell. 2010, 21, 2543–2554, doi:10.1091/mbc.E09-08-0743.
[6]  Moreau, D.; Kumar, P.; Wang, S.C.; Chaumet, A.; Chew, S.Y.; Chevalley, H.; Bard, F. Genome-wide RNAi screens identify genes required for ricin and PE intoxications. Dev. Cell. 2011, 21, 231–244, doi:10.1016/j.devcel.2011.06.014.
[7]  Pietroni, P.; Vasisht, N.; Cook, J.P.; Roberts, D.M.; Lord, J.M.; Hartmann-Petersen, R.; Roberts, L.M.; Spooner, R.A. The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin A chain. Biochem. J. 2013, 453, 435–445, doi:10.1042/BJ20130133.
[8]  Simpson, J.C.; Roberts, L.M.; Romisch, K.; Davey, J.; Wolf, D.H.; Lord, J.M. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett. 1999, 459, 80–84, doi:10.1016/S0014-5793(99)01222-3.
[9]  Spooner, R.A.; Hart, P.J.; Cook, J.P.; Pietroni, P.; Rogon, C.; Hohfeld, J.; Roberts, L.M.; Lord, J.M. Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2008, 105, 17408–17413, doi:10.1073/pnas.0809013105.
[10]  Hebert, D.N.; Bernasconi, R.; Molinari, M. Erad substrates: Which way out? Semin. Cell. Dev. Biol. 2010, 21, 526–532, doi:10.1016/j.semcdb.2009.12.007.
[11]  Nakatsukasa, K.; Brodsky, J.L. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 2008, 9, 861–870.
[12]  Lin, J.H.; Walter, P.; Yen, T.S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 2008, 3, 399–425, doi:10.1146/annurev.pathmechdis.3.121806.151434.
[13]  Wek, R.C.; Cavener, D.R. Translational control and the unfolded protein response. Antioxid. Redox. Signal 2007, 9, 2357–2371, doi:10.1089/ars.2007.1764.
[14]  Greene, C.M.; Miller, S.D.; Carroll, T.; McLean, C.; O’Mahony, M.; Lawless, M.W.; O’Neill, S.J.; Taggart, C.C.; McElvaney, N.G. Alpha-1 antitrypsin deficiency: A conformational disease associated with lung and liver manifestations. J. Inherit. Metab. Dis. 2008, 31, 21–34, doi:10.1007/s10545-007-0748-y.
[15]  Turnbull, E.L.; Rosser, M.F.; Cyr, D.M. The role of the ups in cystic fibrosis. BMC Biochem. 2007, 8 Suppl 1, S11, doi:10.1186/1471-2091-8-S1-S11.
[16]  He, B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell. Death Differ. 2006, 13, 393–403, doi:10.1038/sj.cdd.4401833.
[17]  Barbier, J.; Bouclier, C.; Johannes, L.; Gillet, D. Inhibitors of the cellular trafficking of ricin. Toxins 2012, 4, 15–27, doi:10.3390/toxins4010015.
[18]  Redmann, V.; Oresic, K.; Tortorella, L.L.; Cook, J.P.; Lord, M.; Tortorella, D. Dislocation of ricin toxin A chains in human cells utilizes selective cellular factors. J. Biol. Chem. 2011, 286, 21231–21238.
[19]  Spooner, R.A.; Smith, D.C.; Easton, A.J.; Roberts, L.M.; Lord, J.M. Retrograde transport pathways utilised by viruses and protein toxins. Virol. J. 2006, 3, 26.
[20]  Oresic, K.; Noriega, V.; Andrews, L.; Tortorella, D. A structural determinant of human cytomegalovirus US2 dictates the down-regulation of class I major histocompatibility molecules. J. Biol. Chem. 2006, 281, 19395–19406.
[21]  Harlow, E.; Franza, B.R., Jr.; Schley, C. Monoclonal antibodies specific for adenovirus early region 1A proteins: Extensive heterogeneity in early region 1A products. J. Virol. 1985, 55, 533–546.
[22]  Fiebiger, E.; Hirsch, C.; Vyas, J.M.; Gordon, E.; Ploegh, H.L.; Tortorella, D. Dissection of the dislocation pathway for type I membrane proteins with a new small molecule inhibitor, eeyarestatin. Mol. Biol. Cell. 2004, 15, 1635–1646.
[23]  Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 1999, 4, 67–73.
[24]  Birmingham, A.; Selfors, L.M.; Forster, T.; Wrobel, D.; Kennedy, C.J.; Shanks, E.; Santoyo-Lopez, J.; Dunican, D.J.; Long, A.; Kelleher, D.; et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat. Meth. 2009, 6, 569–575.
[25]  Westerheide, S.D.; Bosman, J.D.; Mbadugha, B.N.; Kawahara, T.L.; Matsumoto, G.; Kim, S.; Gu, W.; Devlin, J.P.; Silverman, R.B.; Morimoto, R.I. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 2004, 279, 56053–56060.
[26]  Yang, H.; Chen, D.; Cui, Q.C.; Yuan, X.; Dou, Q.P. Celastrol, a triterpene extracted from the chinese “thunder of god vine” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006, 66, 4758–4765, doi:10.1158/0008-5472.CAN-05-4529.
[27]  Zhang, T.; Li, Y.; Yu, Y.; Zou, P.; Jiang, Y.; Sun, D. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J. Biol. Chem. 2009, 284, 35381–35389, doi:10.1074/jbc.M109.051532.
[28]  Liu, Y.; Li, W.; Ye, C.; Lin, Y.; Cheang, T.Y.; Wang, M.; Zhang, H.; Wang, S.; Zhang, L. Gambogic acid induces G0/G1 cell cycle arrest and cell migration inhibition via suppressing PDGF receptor b tyrosine phosphorylation and Rac1 activity in rat aortic smooth muscle cells. J. Atheroscler. Thromb. 2010, 17, 901–913, doi:10.5551/jat.3491.
[29]  Lu, N.; Yang, Y.; You, Q.D.; Ling, Y.; Gao, Y.; Gu, H.Y.; Zhao, L.; Wang, X.T.; Guo, Q.L. Gambogic acid inhibits angiogenesis through suppressing vascular endothelial growth factor-induced tyrosine phosphorylation of KDR/Flk-1. Cancer Lett. 2007, 258, 80–89, doi:10.1016/j.canlet.2007.08.015.
[30]  Yi, T.; Yi, Z.; Cho, S.G.; Luo, J.; Pandey, M.K.; Aggarwal, B.B.; Liu, M. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res. 2008, 68, 1843–1850, doi:10.1158/0008-5472.CAN-07-5944.
[31]  Shu, W.; Chen, Y.; Li, R.; Wu, Q.; Cui, G.; Ke, W.; Chen, Z. Involvement of regulations of nucleophosmin and nucleoporins in gambogic acid-induced apoptosis in Jurkat cells. Basic Clin. Pharmacol. Toxicol. 2008, 103, 530–537, doi:10.1111/j.1742-7843.2008.00292.x.
[32]  Wang, T.; Wei, J.; Qian, X.; Ding, Y.; Yu, L.; Liu, B. Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells. Cancer Lett. 2008, 262, 214–222.
[33]  Xu, X.; Liu, Y.; Wang, L.; He, J.; Zhang, H.; Chen, X.; Li, Y.; Yang, J.; Tao, J. Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells. Int. J. Dermatol. 2009, 48, 186–192, doi:10.1111/j.1365-4632.2009.03946.x.
[34]  Davenport, J.; Manjarrez, J.R.; Peterson, L.; Krumm, B.; Blagg, B.S.; Matts, R.L. Gambogic acid, a natural product inhibitor of Hsp90. J. Nat. Prod. 2011, 74, 1085–1092, doi:10.1021/np200029q.
[35]  Zhu, X.; Zhang, H.; Lin, Y.; Chen, P.; Min, J.; Wang, Z.; Xiao, W.; Chen, B. Mechanisms of gambogic acid-induced apoptosis in non-small cell lung cancer cells in relation to transferrin receptors. J. Chemother. 2009, 21, 666–672.
[36]  Bai, Y.; Monzingo, A.F.; Robertus, J.D. The x-ray structure of ricin A chain with a novel inhibitor. Arch. Biochem. Biophys. 2009, 483, 23–28, doi:10.1016/j.abb.2008.12.013.
[37]  Bai, Y.; Watt, B.; Wahome, P.G.; Mantis, N.J.; Robertus, J.D. Identification of new classes of ricin toxin inhibitors by virtual screening. Toxicon 2010, 56, 526–534, doi:10.1016/j.toxicon.2010.05.009.
[38]  Miller, D.J.; Ravikumar, K.; Shen, H.; Suh, J.K.; Kerwin, S.M.; Robertus, J.D. Structure-based design and characterization of novel platforms for ricin and shiga toxin inhibition. J. Med. Chem. 2002, 45, 90–98, doi:10.1021/jm010186s.
[39]  Monzingo, A.F.; Robertus, J.D. X-ray analysis of substrate analogs in the ricin A-chain active site. J. Mol. Biol. 1992, 227, 1136–1145, doi:10.1016/0022-2836(92)90526-P.
[40]  Pang, Y.P.; Park, J.G.; Wang, S.; Vummenthala, A.; Mishra, R.K.; McLaughlin, J.E.; Di, R.; Kahn, J.N.; Tumer, N.E.; Janosi, L.; et al. Small-molecule inhibitor leads of ribosome-inactivating proteins developed using the doorstop approach. PLoS One 2011, 6, e17883, doi:10.1371/journal.pone.0017883.
[41]  Wahome, P.G.; Bai, Y.; Neal, L.M.; Robertus, J.D.; Mantis, N.J. Identification of small-molecule inhibitors of ricin and shiga toxin using a cell-based high-throughput screen. Toxicon 2010, 56, 313–323, doi:10.1016/j.toxicon.2010.03.016.
[42]  Yan, X.; Hollis, T.; Svinth, M.; Day, P.; Monzingo, A.F.; Milne, G.W.; Robertus, J.D. Structure-based identification of a ricin inhibitor. J. Mol. Biol. 1997, 266, 1043–1049, doi:10.1006/jmbi.1996.0865.
[43]  Stechmann, B.; Bai, S.K.; Gobbo, E.; Lopez, R.; Merer, G.; Pinchard, S.; Panigai, L.; Tenza, D.; Raposo, G.; Beaumelle, B.; et al. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 2010, 141, 231–242, doi:10.1016/j.cell.2010.01.043.
[44]  Pawar, V.; De, A.; Briggs, L.; Omar, M.M.; Sweeney, S.T.; Lord, J.M.; Roberts, L.M.; Spooner, R.A.; Moffat, K.G. RNAi screening of Drosophila (Sophophora) melanogaster S2 cells for ricin sensitivity and resistance. J. Biomol. Screen 2011, 16, 436–442, doi:10.1177/1087057110397890.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413