全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2014 

Effects of the Amino Acid Constituents of Microcystin Variants on Cytotoxicity to Primary Cultured Rat Hepatocytes

DOI: 10.3390/toxins6010168

Keywords: microcystin, variants, cytotoxicity, primary cultured rat hepatocytes, environmental water

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microcystins, which are cyclic heptapeptides produced by some cyanobacterial species from algal blooms, strongly inhibit serine/threonine protein phosphatase and are known as hepatotoxins. Microcystins have many structural variations, yet insufficient information is available on the differences in the cytotoxic potentials among the structural variants. In this study, the cytotoxicities of 16 microcystin variants at concentrations of 0.03–10 μg/mL to primary cultured rat hepatocytes were determined by measuring cellular ATP content, and subsequently determined by their 50% inhibitory concentration (IC 50). Differences in the amino acid constituents were associated with differences in cytotoxic potential. [d-Asp 3, Z-Dhb 7] microcystin-LR exhibited the strongest cytotoxicity at IC 50 of 0.053 μg/mL among the microcystin variants tested. Furthermore, [d-Asp 3, Z-Dhb 7] microcystin-HtyR was also highly cytotoxic. These results suggest that both d-Asp and Z-Dhb residues are important in determining the cytotoxic potential of microcystin variants.

References

[1]  Jochimsen, E.M.; Carmichael, W.W.; An, J.; Cardo, D.M.; Cookson, S.T.; Holmes, C.E.; Antunes, M.B.C.; de Melo Filho, D.A.; Lyra, T.M.; Barreto, V.S.T.; et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 1998, 338, 873–878, doi:10.1056/NEJM199803263381304.
[2]  Codd, G.A.; Bell, S.G.; Kaya, K.; Ward, C.J.; Beattle, K.A.; Metcalf, J.S. Cyanobacterial toxins, exposure routes and human health. Eur. J. Physiol. 1999, 34, 405–415.
[3]  Krishnamurthy, T.; Carmichael, W.W.; Sarver, E.W. Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcysis aeruginosa and Anabaena flos-aquae. Toxicon 1986, 24, 865–873, doi:10.1016/0041-0101(86)90087-5.
[4]  Watanabe, M.F.; Oishi, S.; Harada, K.; Matsuura, K.; Kawai, H.; Suzuki, M. Toxins contained in Microcystis species of cyanobacteria (blue-green algae). Toxicon 1988, 26, 1017–1025, doi:10.1016/0041-0101(88)90200-0.
[5]  Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010, doi:10.1007/s00248-012-0159-y.
[6]  Sukenik, A.; Hadas, O.; Kaplan, A.; Quesada, A. Invasion of nostocales (cyanobacteria) to subtropical and temperate freshwater lakes—Physiological, regional, and global driving forces. Front. Microbiol. 2012, 3, doi:10.3389/fmicb.2012.00086.
[7]  Botes, D.P.; Tuinman, A.A.; Wessels, P.L.; Viljoen, C.C.; Kruger, H.; Williams, D.H.; Santikarn, S.; Smith, R.J.; Hammond, S. The structure of cyanoginosin-LA, a cyclic heptapeptide toxin from the cyanobacterium Microcysis aeruginosa. J. Chem. Soc. Perkin Trans. 1984, 1, 2311–2318.
[8]  Krishnamurthy, T.; Szafraniec, L.; Hunt, D.F.; Shabanowitz, J.; Yates, J.R., III; Hauer, C.R.; Carmichael, W.W.; Skulberg, O.; Codd, G.A.; Missler, S. Structural characterization of toxic cyclic peptides from blue-green algae by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 1989, 86, 770–774, doi:10.1073/pnas.86.3.770.
[9]  Rudolph-B?hner, S.; Mierke, D.F.; Moroder, L. Molecular structure of the cyanobacterial tumor-promoting microcystins. FEBS Lett. 1994, 349, 319–323, doi:10.1016/0014-5793(94)00680-6.
[10]  Van Apeldoorn, M.E.; van Egmond, H.P.; Speijers, G.J.A.; Bakker, G.J.I. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60, doi:10.1002/mnfr.200600185.
[11]  Welker, M.; Brunke, M.; Preussel, K.; Lippert, I.; van D?hren, H. Diversity and distribution of Mycrocystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 2004, 150, 1785–1796, doi:10.1099/mic.0.26947-0.
[12]  Harada, K.; Matsuura, K.; Suzuki, M.; Watanabe, M.F.; Oishi, S.; Dahlem, A.M.; Beasley, V.R.; Carmicheal, W.W. Isolation and characterization of the minor components associated with microcystins LR and RR in the cyanobacterium (blue-green algae). Toxicon 1990, 28, 55–64, doi:10.1016/0041-0101(90)90006-S.
[13]  Harada, K.; Ogawa, K.; Matsuura, K.; Murata, H.; Suzuki, M.; Watanabe, M.F.; Itezono, Y.; Nakayama, N. Structural determination of geometrical isomers of microcystins LR and RR from cyanobacteria by two-dimensional NMR spectroscopic techniques. Chem. Res. Toxicol. 1990, 3, 473–481, doi:10.1021/tx00017a014.
[14]  An, J.; Carmichael, W.W. Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 1994, 32, 1495–1507, doi:10.1016/0041-0101(94)90308-5.
[15]  Eriksson, J.E.; Gr?nberg, L.; Nyg?rd, S.; Slotte, J.P.; Meriluoto, J.A.O. Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim. Biophys. Acta 1990, 1025, 60–66.
[16]  Fischer, W.J.; Altheimer, S.; Cattori, J.; Meier, P.J.; Dietrich, D.R.; Hagenbuch, B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 2005, 203, 257–263, doi:10.1016/j.taap.2004.08.012.
[17]  Runnegar, M.T.; Kong, S.; Berndt, N. Protein phosphatase inhibition and in vivo hepatotoxicity of microcystins. Am. J. Physiol. 1993, 265, G224–G230.
[18]  Yoshida, T.; Makita, Y.; Nagata, S.; Tsutsumi, T.; Yoshida, F.; Sekijima, M.; Tamura, S.; Ueno, Y. Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat. Toxins 1997, 5, 91–95, doi:10.1002/nt.1.
[19]  MacKintosh, C.; Beattie, K.A.; Klumpp, S.; Choen, P.; Codd, G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990, 264, 187–192, doi:10.1016/0014-5793(90)80245-E.
[20]  ?egura, B.; Gajski, G.; ?traser, A.; Garaj-Vrhovac, V.; Filipi?, M. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes. Mutat. Res. 2011, 726, 116–122, doi:10.1016/j.mrgentox.2011.10.002.
[21]  Soares, R.M.; Cagido, V.R.; Ferraro, R.B.; Meyer-Fernandes, J.R.; Rocco, P.R.; Zin, W.A.; Azevedo, S.M. Effects of microcystin-LR on mouse lungs. Toxicon 2007, 50, 330–338, doi:10.1016/j.toxicon.2007.04.003.
[22]  Boua?cha, N.; Maatouk, I.; Plessis, M.J.; Périn, F. Genotoxic potential of microcystin-LR and in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Environ. Toxicol. 2005, 20, 341–347, doi:10.1002/tox.20110.
[23]  ?uput, D.; Zorc-Pleskovi?, R.; Petrovi?, D.; Milutinovi?, A. Cardiotoxic injury caused by chronic administration of microcystin-YR. Folia Biol. 2010, 56, 14–18.
[24]  Nobre, A.C.; Jorge, M.C.; Menezes, D.B.; Fonteles, M.C.; Monteiro, H.S. Effects of microcystin-LR in isolated perfused rat kidney. Braz. J. Med. Biol. Res. 1999, 32, 985–988, doi:10.1590/S0100-879X1999000800008.
[25]  Dias, E.; Andrade, M.; Alverca, E.; Pereria, P.; Batoréu, M.C.; Jordan, P.; Silva, M.J. Comparative study of the cytotoxic effect of microcystin-LR and purified extracts from Microcystis aeruginosa on a kidney cell line. Toxicon 2009, 53, 487–495, doi:10.1016/j.toxicon.2009.01.029.
[26]  Li, T.; Ying, L.; Wang, H.; Li, N.; Fu, W.; Guo, Z.; Xu, L. Microcystin-LR induces ceramide to regulate PP2A and destabilize cytoskeleton in HEK293 cells. Toxicol. Sci. 2012, 128, 147–157.
[27]  Gaudin, J.; Le Hegarat, L.; Nesslany, F.; Marzin, D.; Fessard, V. In vivo genotoxic potential of microcystin-LR: A cyanobacterial toxin, in investigated both by the unscheduled DNA synthesis (UDS) and the comet assays after intravenous administration. Environ. Toxicol. 2008, 24, 200–209.
[28]  Hooser, S.B.; Beasley, V.R.; Lovell, R.A.; Carmichael, W.W.; Haschek, W.M. Toxicity of microcystin LR, a cyclic heptapeptide hepatotoxin from Microcystis aeruginosa, to rats and mice. Vet. Pathol. 1989, 26, 246–252, doi:10.1177/030098588902600309.
[29]  Hooser, S.B. Fulminant hepatocyte apoptosis in vivo following microcystin-LR administration to rats. Toxicol. Pathol. 2000, 28, 726–733, doi:10.1177/019262330002800513.
[30]  Chen, L.; Zhang, X.; Zhou, W.; Qiao, Q.; Liang, H.; Li, G.; Wang, J.; Cai, F. The Interactive effects of cytoskeleton disruption and mitochondria dysfunction lead to reproductive toxicity induced by microcystin-LR. PLoS One 2013, 8, e53949.
[31]  WHO. Guidelines for Drinking-Water Quality, Volume 2, Health Criteria and Other Supporting Information, Addendum, WHO/EOS/98.1. World Health Organization: Geneva, Switzerland, 1998.
[32]  Nicholson, B.C.; Burch, M.D. Evaluation of Analytical Methods for Detection and Quantification of Cyanotoxins in Relation to Australian Drinking Water Guidelines. Canberra, Australia, 2001.
[33]  Namikoshi, M.; Sivonen, K.; Evans, W.R.; Caemichael, W.W.; Rouhiainen, L.; Luukkainen, R.; Rinehart, K.L. Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant from Anabaena sp. strain 66. Chem. Res. Toxicol. 1992, 5, 661–666, doi:10.1021/tx00029a011.
[34]  Sivonen, K.; Namikoshi, M.; Evans, W.R.; F?rdig, M.; Carmichael, W.W.; Rinehart, K.L. Three new microcystins, cyclic heptapeptides hepatotoxins, from Nostoc sp. strain 152. Chem. Res. Toxicol. 1992, 5, 464–469, doi:10.1021/tx00028a003.
[35]  Sano, T.; Takagi, H.; Kaya, K. A Dhb-microcystin from the filamentous cyanobacterium Planktothrix rubescens. Phytochemistry 2004, 65, 2159–2162, doi:10.1016/j.phytochem.2004.03.034.
[36]  Wood, S.A.; Mountfort, D.; Selwood, A.I.; Holland, P.T.; Puddick, J.; Cary, S.C. Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Appl. Environ. Microbiol. 2008, 74, 7243–7251, doi:10.1128/AEM.01243-08.
[37]  Feurstein, D.; Stemmer, K.; Kleinteich, J.; Speicher, T.; Dietrich, D.R. Microcystin congener- and concentration-dependent induction of murine neuron apoptosis and neurite degeneration. Toxicol. Sci. 2011, 124, 424–431, doi:10.1093/toxsci/kfr243.
[38]  Vesterkvist, P.S.; Misiorek, J.O.; Spoof, L.E.; Toivola, D.M.; Meriluoto, J.A. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 2012, 4, 1008–1023, doi:10.3390/toxins4111008.
[39]  Huguet, A.; Henri, J.; Petitpas, M.; Hogeveen, K.; Fessard, V. Comparative cytotoxicity, oxidative stress, and cytokine secretion induced by two cyanotoxin variants, microcystin LR and RR, in human intestinal Caco-2 cells. J. Biochem. Mol. Toxicol. 2013, 27, 253–258, doi:10.1002/jbt.21482.
[40]  Maatouk, I.; Boua?cha, N.; Plessis, M.J.; Périn, F. Detection by 32P-postlabelling of 8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA as biomarker of microcystin-LR and nodularin-induced DNA damage in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Mutat. Res. 2004, 564, 9–20, doi:10.1016/j.mrgentox.2004.06.010.
[41]  Espi?a, B.; Louzao, M.C.; Cagide, E.; Alfonso, A.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes. Br. J. Pharmacol. 2010, 159, 337–344, doi:10.1111/j.1476-5381.2009.00512.x.
[42]  Boua?cha, N.; Maatouk, I. Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes. Toxicol. Lett. 2004, 148, 53–63, doi:10.1016/j.toxlet.2003.12.005.
[43]  Ulukaya, E.; Ozdikicioglu, F.; Yilmaztepe, O.; Demirci, M. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol. In Vitro 2008, 22, 232–239, doi:10.1016/j.tiv.2007.08.006.
[44]  Mueller, H.; Kassack, M.U.; Wiese, M. Comparison of the usefulness of the MTT, ATT, and Calcein assay to predict the potency of cytotoxic agents in various human cancer cell lines. J. Biomol. Screen. 2004, 9, 506–515, doi:10.1177/1087057104265386.
[45]  Blom, J.F.; Robinson, J.A.; Jüttner, F. High grazer toxicity of [d-Asp3, (E)-Dhb7] microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon 2001, 39, 1923–1932, doi:10.1016/S0041-0101(01)00178-7.
[46]  Blom, J.F.; Jüttner, F. High crustacean toxicity of microcystin congeners does not correlate with high protein phosphatase inhibitory activity. Toxicon 2005, 46, 465–470.
[47]  Feurstein, D; Holst, K.; Fischer, A.; Dietrich, D.R. Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells. Toxicol. Appl. Pharmacol. 2009, 234, 247–255, doi:10.1016/j.taap.2008.10.011.
[48]  Sano, T.; Takagi, H.; Nishikawa, M.; Kaya, K. NIES certified reference material for microcystins, hepatotoxic cyclic peptide toxins from cyanobacterial blooms in eutrophic water bodies. Anal. Bioanal. Chem. 2008, 391, 2005–2010, doi:10.1007/s00216-008-2040-x.
[49]  Sano, T.; Beattie, K.A.; Codd, G.A.; Kaya, K. Two (Z)-dehydrobutyrine-containing microcystins from a hepatotoxic bloom of Oscillatoria agardhii from Soulseat Loch, Scotland. J. Nat. Prod. 1998, 61, 851–853, doi:10.1021/np980047m.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413