全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2014 

Simultaneous Effect of Temperature and Irradiance on Growth and Okadaic Acid Production from the Marine Dinoflagellate Prorocentrum belizeanum

DOI: 10.3390/toxins6010229

Keywords: dinoflagellate, microalga, irradiance, temperature, photobioreactor, Prorocentrum belizeanum, modelling

Full-Text   Cite this paper   Add to My Lib

Abstract:

Benthic marine dioflagellate microalgae belonging to the genus Prorocentrum are a major source of okadaic acid (OA), OA analogues and polyketides. However, dinoflagellates produce these valuable toxins and bioactives in tiny quantities, and they grow slowly compared to other commercially used microalgae. This hinders evaluation in possible large-scale applications. The careful selection of producer species is therefore crucial for success in a hypothetical scale-up of culture, as are appropriate environmental conditions for optimal growth. A clone of the marine toxic dinoflagellate P. belizeanum was studied in vitro to evaluate its capacities to grow and produce OA as an indicator of general polyketide toxin production under the simultaneous influence of temperature ( T) and irradiance ( I 0). Three temperatures and four irradiance levels were tested (18, 25 and 28 °C; 20, 40, 80 and 120 μE·m ?2·s ?1), and the response variables measured were concentration of cells, maximum photochemical yield of photosystem II (PSII), pigments and OA. Experiments were conducted in T-flasks, since their parallelepipedal geometry proved ideal to ensure optically thin cultures, which are essential for reliable modeling of growth-irradiance curves. The net maximum specific growth rate ( μm) was 0.204 day ?1 at 25 °C and 40 μE·m ?2·s ?1. Photo-inhibition was observed at I 0 > 40 μEm ?2s ?1, leading to culture death at 120 μE·m ?2·s ?1 and 28 °C. Cells at I 0 ≥ 80 μE·m ?2·s ?1 were photoinhibited irrespective of the temperature assayed. A mechanistic model for μ m- I 0 curves and another empirical model for relating μ m- T satisfactorily interpreted the growth kinetics obtained. ANOVA for responses of PSII maximum photochemical yield and pigment profile has demonstrated that P. belizeanum is extremely light sensitive. The pool of photoprotective pigments (diadinoxanthin and dinoxanthin) and peridinin was not able to regulate the excessive light-absorption at high I 0- T. OA synthesis in cells was decoupled from optimal growth conditions, as OA overproduction was observed at high temperatures and when both temperature and irradiance were low. T-flask culture observations were consistent with preliminary assays outdoors.

References

[1]  Camacho, F.G.; Rodríguez, J.G.; Mirón, A.S.; García, M.C.C.; Belarbi, E.H.; Chisti, Y.; Grima, E.M. Biotechnological significance of toxic marine dinoflagellates. Biotechnol. Adv. 2007, 25, 176–194, doi:10.1016/j.biotechadv.2006.11.008.
[2]  Glaser, K.B.; Mayer, A.M.S. A renaissance in marine pharmacology: From preclinical curiosity to clinical reality. Biochem. Pharmacol. 2009, 78, 440–448, doi:10.1016/j.bcp.2009.04.015.
[3]  Gallardo-Rodríguez, J.; Sánchez-Mirón, A.; García-Camacho, F.; López-Rosales, L.; Chisti, Y.; Molina-Grima, E. Bioactives from microalgal dinoflagellates. Biotechnol. Adv. 2012, 30, 1673–1684, doi:10.1016/j.biotechadv.2012.07.005.
[4]  Shimizu, Y. Microalgal metabolites: A new perspective. Annu. Rev. Microbiol. 1996, 50, 431–465, doi:10.1146/annurev.micro.50.1.431.
[5]  Xu, N.; Duan, S.; Li, A.; Zhang, C.; Cai, Z.; Hu, Z. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense lu. Harmful Algae 2010, 9, 13–17, doi:10.1016/j.hal.2009.06.002.
[6]  Paz, B.; Vázquez, J.A.; Riobó, P.; Franco, J.M. Study of the effect of temperature, irradiance and salinity on growth and yessotoxin production by the dinoflagellate Protoceratium reticulatum in culture by using a kinetic and factorial approach. Mar. Environ. Res. 2006, 62, 286–300, doi:10.1016/j.marenvres.2006.04.066.
[7]  Cruz, P.G.; Daranas, A.H.; Fernández, J.J.; Souto, M.L.; Norte, M. Dtx5c, a new oa sulphate ester derivative from cultures of Prorocentrum belizeanum. Toxicon 2006, 47, 920–924, doi:10.1016/j.toxicon.2006.03.005.
[8]  Cruz, P.G.; Fernández, J.J.; Norte, M.; Daranas, A.H. Belizeanic acid: A potent protein phosphatase 1 inhibitor belonging to the okadaic acid class, with an unusual skeleton. Chem. Eur. J. 2008, 14, 6948–6956, doi:10.1002/chem.200800593.
[9]  Napolitano, J.G.; Norte, M.; Fernández, J.J.; Daranas, A.H. Corozalic acid: A key okadaic acid biosynthetic precursor with phosphatase inhibition activity. Chem. Eur. J. 2010, 16, 11576–11579.
[10]  Napolitano, J.G.; Norte, M.; Padrón, J.M.; Fernández, J.J.; Hernández Daranas, A. Belizeanolide, a cytotoxic macrolide from the dinoflagellate Prorocentrum belizeanum. Angew. Chem. Int. Ed. 2009, 48, 796–799.
[11]  Paz, B.; Daranas, A.H.; Cruz, P.G.; Franco, J.M.; Napolitano, J.G.; Norte, M.; Fernández, J.J. Identification and characterization of dtx-5c and 7-hydroxymethyl-2-methylene-octa-4,7-dienyl okadaate from Prorocentrum belizeanum cultures by lc-ms. Toxicon 2007, 50, 470–478, doi:10.1016/j.toxicon.2007.04.011.
[12]  Paz, B.; Daranas, A.H.; Cruz, P.G.; Franco, J.M.; Norte, M.; Fernández, J.J. Identification of 19-epi-okadaic acid, a new diarrhetic shellfish poisoning toxin, by liquid chromatography with mass spectrometry detection. Mar. Drugs 2008, 6, 489–495.
[13]  Hu, W.; Xu, J.; Sinkkonen, J.; Wu, J. Polyketides from marine dinoflagellates of the genus Prorocentrum, biosynthetic origin and bioactivity of their okadaic acid analogues. Mini-Rev. Med. Chem. 2010, 10, 51–61, doi:10.2174/138955710791112541.
[14]  García-Camacho, F.; Sánchez-Mirón, A.; Molina-Grima, E.; Camacho-Rubio, F.; Merchuck, J.C. A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics. J. Theor. Biol. 2012, 304, 1–15, doi:10.1016/j.jtbi.2012.03.021.
[15]  Aligizaki, K.; Nikolaidis, G.; Katikou, P.; Baxevanis, A.D.; Abatzopoulos, T.J. Potentially toxic epiphytic Prorocentrum (dinophyceae) species in greek coastal waters. Harmful Algae 2009, 8, 299–311, doi:10.1016/j.hal.2008.07.002.
[16]  Pan, Y.; Cembella, A.D.; Quilliam, M.A. Cell cycle and toxin production in the benthic dinoflagellate Prorocentrum lima. Mar. Biol. 1999, 134, 541–549, doi:10.1007/s002270050569.
[17]  Varkitzi, I.; Pagou, K.; Granéli, E.; Hatzianestis, I.; Pyrgaki, C.; Pavlidou, A.; Montesanto, B.; Economou-Amilli, A. Unbalanced N:P ratios and nutrient stress controlling growth and toxin production of the harmful dinoflagellate Prorocentrum lima (ehrenberg) dodge. Harmful Algae 2010, 9, 304–311, doi:10.1016/j.hal.2009.12.001.
[18]  Morton, S.L.; Faust, M.A.; Fairey, E.A.; Moeller, P.D.R. Morphology and toxicology of Prorocentrum arabianum sp. Nov., (dinophyceae) a toxic planktonic dinoflagellate from the gulf of oman, arabian sea. Harmful Algae 2002, 1, 393–400, doi:10.1016/S1568-9883(02)00047-1.
[19]  Lawrence, J.E.; Bauder, A.G.; Quilliam, M.A.; Cembella, A.D. Prorocentrum lima: A Putative Link to Diarrhetic Shellfish Poisoning in Nova Scotia, Canada. In Harmful Algae. In Proceedings of the VIII International Conference on Harmful Algae; Reguera, B., Blanco, J., Fernández, M., Wyatt, T., Eds.; Xunta de Galicia and IOC of UNESCO: Vigo, Spain, 1998; pp. 78–79.
[20]  Nascimento, S.M.; Purdie, D.A.; Morris, S. Morphology, toxin composition and pigment content of Prorocentrum lima strains isolated from a coastal lagoon in southern UK. Toxicon 2005, 45, 633–649, doi:10.1016/j.toxicon.2004.12.023.
[21]  Vale, P.; Veloso, V.; Amorim, A. Toxin composition of a Prorocentrum lima strain isolated from the portuguese coast. Toxicon 2009, 54, 145–152, doi:10.1016/j.toxicon.2009.03.026.
[22]  Morlaix, M.; Lassus, P. Nitrogen and phosphorus effects upon division rate and toxicity of Prorocentrum lima (ehrenberg) dodge. Cryptogam. Algologie 1992, 13, 187–195.
[23]  Aikman, K.E.; Tindall, D.R.; Morton, S.L. Physiology and Potency of the Dinoflagellate Prorocentrum hoffmannianum during One Complete Growth Cycle. In Toxic Phytoplankton Blooms in the Sea; Smayda, T.J., Shimizu, Y., Eds.; Elsevier: New York, NY, USA, 1993; pp. 463–468.
[24]  Morton, S.L.; Norris, D.R. Role of Temperature, Salinity, and Light on the Seasonality of Prorocentrum lima (Ehrenberg) Dodge. In Toxic Marine Phytoplankton; Graneli, E., Sundstron, B., Edler, D., Anderson, D.M., Eds.; Elsevier: New York, NY, USA, 1990; pp. 201–205.
[25]  Morton, S.L.; Norris, D.R.; Bomber, J.W. Effect of temperature, salinity and light intensity on the growth and seasonality of toxic dinoflagellates associated with ciguatera. J. Exp. Mar. Biol. Ecol. 1992, 157, 79–90, doi:10.1016/0022-0981(92)90076-M.
[26]  Borowitzka, M. Wastewater Treatment with Algae. In Limits to Growth; Wong, Y., Tam, N., Eds.; Springer: Berlin, Germany, 1988; pp. 203–218.
[27]  Rubio, F.C.; Camacho, F.G.; Sevilla, J.M.; Chisti, Y.; Grima, E.M. A mechanistic model of photosynthesis in microalgae. Biotechnol. Bioeng. 2003, 81, 459–473, doi:10.1002/bit.10492.
[28]  Huang, L.; Hwang, C.A.; Phillips, J. Evaluating the effect of temperature on microbial growth rate-the ratkowsky and a b?lehrádek-type models. J. Food Sci. 2011, 76, 547–557, doi:10.1111/j.1750-3841.2011.02345.x.
[29]  Zwietering, M.H.; de Koos, J.T.; Hasenack, B.E.; de Wit, J.C.; van’t Riet, K. Modeling of bacterial growth as a function of temperature. App. Environ. Microbiol. 1991, 57, 1094–1101.
[30]  Bernard, O.; Rémond, B. Validation of a simple model accounting for light and temperature effect on microalgal growth. Biores. Technol. 2012, 123, 520–527, doi:10.1016/j.biortech.2012.07.022.
[31]  Baek, S.H.; Shimode, S.; Kikuchi, T. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of temperature, light intensity and photoperiod. Harmful Algae 2008, 7, 163–173, doi:10.1016/j.hal.2007.06.006.
[32]  Béchet, Q.; Shilton, A.; Guieysse, B. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 2013, 31, 1648–1663, doi:10.1016/j.biotechadv.2013.08.014.
[33]  Masojídek, J.; Vonshak, A.; Torzillo, G. Chlorophyll Fluorescence Applications in Microalgal Mass Cultures. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications; Suggett, D.J., Prá?il, O., Borowitzka, M.A., Eds.; Springer: Dordrecht, The Netherlanda, 2010; pp. 277–292.
[34]  Fitt, W.K.; Warner, M.E. Bleaching patterns of four species of caribbean reef corals. Biol. Bull. 1995, 189, 298–307, doi:10.2307/1542147.
[35]  Warner, M.E.; Fitt, W.K.; Schmidt, G.W. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: A novel approach. Plant Cell Environ. 1996, 19, 291–299, doi:10.1111/j.1365-3040.1996.tb00251.x.
[36]  Franklin, D.J.; Hoegh-Guldberg, O.; Jones, R.J.; Berges, J.A. Cell death and degeneration in the symbiotic dinoflagellates of the coral stylophora pistillata during bleaching. Mar. Ecol. Prog. Ser. 2004, 272, 117–130, doi:10.3354/meps272117.
[37]  Zapata, M.; Fraga, S.; Rodríguez, F.; Garrido, J.L. Pigment-based chloroplast types in dinoflagellates. Mar. Ecol. Prog. Ser. 2012, 465, 33–52, doi:10.3354/meps09879.
[38]  Dubinsky, Z.; Stambler, N. Photoacclimation processes in phytoplankton: Mechanisms, consequences, and applications. Aquat. Microb. Ecol. 2009, 56, 163–176, doi:10.3354/ame01345.
[39]  Thompson, P.A.; Guo, M.X.; Harrison, P.J. Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton1. J. Phycol. 1992, 28, 481–488.
[40]  Sukenik, A.; Zmora, O.; Carmeli, Y. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. Ii. Nannochloropsis sp. Aquaculture 1993, 117, 313–326, doi:10.1016/0044-8486(93)90328-V.
[41]  Del Campo, J.A.; Moreno, J.; Rodr??guez, H.; Angeles Vargas, M.; Rivas, J.; Guerrero, M.G. Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (chlorophyta). J. Biotechnol. 2000, 76, 51–59, doi:10.1016/S0168-1656(99)00178-9.
[42]  Borowitzka, M. Vitamins and Fine Chemicals from Micro-Algae. In Micro-Algal Biotechnology; Borowitzka, M., Borowitzka, L., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 153–196.
[43]  Carvalho, A.P.; Monteiro, C.M.; Malcata, F.X. Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J. App. Phycol. 2009, 21, 543–552, doi:10.1007/s10811-009-9415-z.
[44]  Venn, A.A.; Wilson, M.A.; Trapido-Rosenthal, H.G.; Keely, B.J.; Douglas, A.E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 2006, 29, 2133–2142, doi:10.1111/j.1365-3040.2006.001587.x.
[45]  Morton, S.L.; Moeller, P.D.R.; Young, K.A.; Lanoue, B. Okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum faust isolated from the belizean coral reef ecosystem. Toxicon 1998, 36, 201–206, doi:10.1016/S0041-0101(97)00054-8.
[46]  Tchernov, D.; Gorbunov, M.Y.; de Vargas, C.; Yadav, S.N.; Milligan, A.J.; H?ggblom, M.; Falkowski, P.G. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl Acad. Sci. USA 2004, 101, 13531–13535, doi:10.1073/pnas.0402907101.
[47]  Ledford, H.K.; Niyogi, K.K. Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ. 2005, 28, 1037–1045, doi:10.1111/j.1365-3040.2005.01374.x.
[48]  Brown, B.; Downs, C.; Dunne, R.; Gibb, S. Preliminary evidence for tissue retraction as a factor in photoprotection of corals incapable of xanthophyll cycling. J. Exp. Mar. Biol. Ecol. 2002, 277, 129–144, doi:10.1016/S0022-0981(02)00305-2.
[49]  Poulson, K.L.; Sieg, R.D.; Prince, E.K.; Kubanek, J. Allelopathic compounds of a red tide dinoflagellate have species-specific and context-dependent impacts on phytoplankton. Mar. Ecol. Prog. Ser. 2010, 416, 69–78, doi:10.3354/meps08788.
[50]  Morton, S.L.; Bomber, J.W.; Tindall, P.M. Environmental effects on the production of okadaic acid from Prorocentrum hoffmannianum faust i. Temperature, light, and salinity. J. Exp. Mar. Biol. Ecol. 1994, 178, 67–77, doi:10.1016/0022-0981(94)90225-9.
[51]  Grzebyk, D.; Berland, B. Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (dinophyceae) from the mediterranean sea. J. Plankton Res. 1996, 18, 1837–1849, doi:10.1093/plankt/18.10.1837.
[52]  Guillard, R.R.L.; Hargraves, P.E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 1993, 32, 234–236, doi:10.2216/i0031-8884-32-3-234.1.
[53]  Grima, E.M.; Camacho, F.G.; Pérez, J.A.S.; Fernéndez, F.G.A.; Sevilla, J.M.F. Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme Microb. Technol. 1997, 21, 375–381, doi:10.1016/S0141-0229(97)00012-4.
[54]  Acosta, M.L.; Sánchez, A.; García, F.; Contreras, A.; Molina, E. Analysis of kinetic, stoichiometry and regulation of glucose and glutamine metabolism in hybridoma batch cultures using logistic equations. Cytotechnology 2007, 54, 189–200, doi:10.1007/s10616-007-9089-9.
[55]  Rodríguez, J.J.G.; Mirón, A.S.; Camacho, F.G.; García, M.C.C.; Belarbi, E.H.; Chisti, Y.; Grima, E.M. Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol. Prog. 2009, 25, 792–800, doi:10.1002/btpr.161.
[56]  Cerón, M.C.; Campos, I.; Sánchez, J.F.; Acién, F.G.; Molina, E.; Fernández-Sevilla, J.M. Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. J. Agric. Food Chem. 2008, 56, 11761–11766.
[57]  Hansmann, E. Pigment Analysis. In Handbook of Phycological Methods: Culture Methods and Growth Measurements; Stein, J.R., Ed.; Cambridge University Press: London, UK, 1973.
[58]  Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Fisheries Research Board of Canada: Ottawa, Canada, 1972; p. 167.
[59]  Kelly, S.S.; Bishop, A.G.; Carmody, E.P.; James, K.J. Isolation of dinophysistoxin-2 and the high-performance liquid chromatographic analysis of diarrhetic shellfish toxins using derivatisation with 1-bromoacetylpyrene. J. Chromatogr. A 1996, 749, 33–40, doi:10.1016/0021-9673(96)00448-7.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413