全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2014 

A Review of the Evidence that Ochratoxin A Is an Nrf2 Inhibitor: Implications for Nephrotoxicity and Renal Carcinogenicity

DOI: 10.3390/toxins6010371

Keywords: proximal tubule, ochratoxin, oxidative, Nrf2

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several studies have demonstrated that ochratoxin A (OTA) inhibits the nuclear factor, erythroid 2-like 2 (Nrf2) oxidative stress response pathway. At the cellular level this would attenuate (i) glutathione synthesis; (ii) recycling of oxidised glutathione; (iii) activity of oxidoreductases; and (iv) phase II metabolism inducibility. The effects combined would render the cell and tissue more vulnerable to oxidative stress. Indeed, Nrf2 knock out animals exhibit increased susceptibility to various types of chemical-induced injury. Several studies have shown that OTA exposure can inhibit Nrf2 responses. Such an action would initially lead to increased susceptibility to both physiological and chemical-induced cell stress. However, chronic exposure to OTA may also act as a selective pressure for somatic mutations in Nrf2 or its inhibitor Keap-1, leading to constitutive Nrf2 activation. Nrf2 overexpression confers a survival advantage and is often associated with cancer cell survival. Here we review the evidence for OTA’s role as an Nrf2 inhibitor and discuss the implications of this mechanism in nephrotoxicity and carcinogenicity.

References

[1]  Clark, H.A.; Snedeker, S.M. Ochratoxin A: Its cancer risk and potential for exposure. J. Toxicol. Environ. Health B Crit. Rev. 2006, 9, 265–296, doi:10.1080/15287390500195570.
[2]  Scientific Cooperation (SCOOP) Task Reports. Reports on tasks for scientific cooperation: Assessment of dietary intake of ochratoxin a by the population of eu member states. Available online: http://ec.europa.eu/food/fs/scoop/3.2.7_en.pdf (accessed on 15 October 2013).
[3]  Zlender, V.; Breljak, D.; Ljubojevic, M.; Flajs, D.; Balen, D.; Brzica, H.; Domijan, A.M.; Peraica, M.; Fuchs, R.; Anzai, N.; et al. Low doses of ochratoxin a upregulate the protein expression of organic anion transporters oat1, oat2, oat3 and oat5 in rat kidney cortex. Toxicol. Appl. Pharmacol. 2009, 239, 284–296, doi:10.1016/j.taap.2009.06.008.
[4]  Anzai, N.; Jutabha, P.; Endou, H. Molecular mechanism of ochratoxin a transport in the kidney. Toxins 2010, 2, 1381–1398.
[5]  Jennings, P.; Weiland, C.; Limonciel, A.; Bloch, K.M.; Radford, R.; Aschauer, L.; McMorrow, T.; Wilmes, A.; Pfaller, W.; Ahr, H.J.; et al. Transcriptomic alterations induced by ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch. Toxicol. 2012, 86, 571–589, doi:10.1007/s00204-011-0780-4.
[6]  Boorman, G.A.; McDonald, M.R.; Imoto, S.; Persing, R. Renal lesions induced by ochratoxin a exposure in the f344 rat. Toxicol. Pathol. 1992, 20, 236–245, doi:10.1177/019262339202000210.
[7]  Boorman, G.A. Toxicology and carcinogenesis studies of ochratoxin a in f344/n rats (gavage studies). Natl. Toxicol. Progr. Tech. Rep. Ser. 1989, 5, 1–142.
[8]  Pfohl-Leszkowicz, A.; Manderville, R.A. An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity. Chem. Res. Toxicol. 2012, 25, 252–262, doi:10.1021/tx200430f.
[9]  Rached, E.; Pfeiffer, E.; Dekant, W.; Mally, A. Ochratoxin A: Apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics? Toxicol. Sci. 2006, 92, 78–86, doi:10.1093/toxsci/kfj213.
[10]  Czakai, K.; Muller, K.; Mosesso, P.; Pepe, G.; Schulze, M.; Gohla, A.; Patnaik, D.; Dekant, W.; Higgins, J.M.; Mally, A. Perturbation of mitosis through inhibition of histone acetyltransferases: The key to ochratoxin a toxicity and carcinogenicity? Toxicol. Sci. 2011, 122, 317–329, doi:10.1093/toxsci/kfr110.
[11]  Jennings, P.; Limonciel, A.; Felice, L.; Leonard, M.O. An overview of transcriptional regulation in response to toxicological insult. Arch. Toxicol. 2013, 87, 49–72, doi:10.1007/s00204-012-0919-y.
[12]  Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; et al. An Nrf2/small maf heterodimer mediates the induction of phase ii detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 1997, 236, 313–322, doi:10.1006/bbrc.1997.6943.
[13]  Baird, L.; Dinkova-Kostova, A.T. The cytoprotective role of the keap1-Nrf2 pathway. Arch. Toxicol. 2011, 85, 241–272, doi:10.1007/s00204-011-0674-5.
[14]  Yates, M.S.; Tran, Q.T.; Dolan, P.M.; Osburn, W.O.; Shin, S.; McCulloch, C.C.; Silkworth, J.B.; Taguchi, K.; Yamamoto, M.; Williams, C.R.; et al. Genetic versus chemoprotective activation of Nrf2 signaling: Overlapping yet distinct gene expression profiles between keap1 knockout and triterpenoid-treated mice. Carcinogenesis 2009, 30, 1024–1031, doi:10.1093/carcin/bgp100.
[15]  Okawa, H.; Motohashi, H.; Kobayashi, A.; Aburatani, H.; Kensler, T.W.; Yamamoto, M. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem. Biophys. Res. Commun. 2006, 339, 79–88.
[16]  Reichard, J.F.; Motz, G.T.; Puga, A. Heme oxygenase-1 induction by Nrf2 requires inactivation of the transcriptional repressor bach1. Nucleic Acids Res. 2007, 35, 7074–7086, doi:10.1093/nar/gkm638.
[17]  Yueh, M.F.; Tukey, R.H. Nrf2-keap1 signaling pathway regulates human ugt1a1 expression in vitro and in transgenic ugt1 mice. J. Biol. Chem. 2007, 282, 8749–8758, doi:10.1074/jbc.M610790200.
[18]  Harvey, C.J.; Thimmulappa, R.K.; Singh, A.; Blake, D.J.; Ling, G.; Wakabayashi, N.; Fujii, J.; Myers, A.; Biswal, S. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic. Biol. Med. 2009, 46, 443–453, doi:10.1016/j.freeradbiomed.2008.10.040.
[19]  Jung, K.A.; Choi, B.H.; Nam, C.W.; Song, M.; Kim, S.T.; Lee, J.Y.; Kwak, M.K. Identification of aldo-keto reductases as Nrf2-target marker genes in human cells. Toxicol. Lett. 2013, 218, 39–49, doi:10.1016/j.toxlet.2012.12.026.
[20]  Limonciel, A.; Wilmes, A.; Aschauer, L.; Radford, R.; Bloch, K.M.; McMorrow, T.; Pfaller, W.; van Delft, J.H.; Slattery, C.; Ryan, M.P.; et al. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells. Arch. Toxicol. 2012, 86, 1741–1751, doi:10.1007/s00204-012-0897-0.
[21]  Wilmes, A.; Crean, D.; Aydin, S.; Pfaller, W.; Jennings, P.; Leonard, M.O. Identification and dissection of the Nrf2 mediated oxidative stress pathway in human renal proximal tubule toxicity. Toxicol. in Vitro 2011, 25, 613–622, doi:10.1016/j.tiv.2010.12.009.
[22]  Wilmes, A.; Limonciel, A.; Aschauer, L.; Moenks, K.; Bielow, C.; Leonard, M.O.; Hamon, J.; Carpi, D.; Ruzek, S.; Handler, A.; et al. Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J. Proteomics 2013, 79, 180–194, doi:10.1016/j.jprot.2012.11.022.
[23]  Forti, E.; Bulgheroni, A.; Cetin, Y.; Hartung, T.; Jennings, P.; Pfaller, W.; Prieto, P. Characterisation of cadmium chloride induced molecular and functional alterations in airway epithelial cells. Cell. Phys. Biochem. 2010, 25, 159–168, doi:10.1159/000272060.
[24]  Forti, E.; Salovaara, S.; Cetin, Y.; Bulgheroni, A.; Tessadri, R.; Jennings, P.; Pfaller, W.; Prieto, P. In vitro evaluation of the toxicity induced by nickel soluble and particulate forms in human airway epithelial cells. Toxicol. in Vitro 2011, 25, 454–461, doi:10.1016/j.tiv.2010.11.013.
[25]  Crean, D.; Felice, L.; Taylor, C.T.; Rabb, H.; Jennings, P.; Leonard, M.O. Glucose reintroduction triggers the activation of nrf2 during experimental ischemia reperfusion. Mol. Cell. Biochem. 2012, 366, 231–238, doi:10.1007/s11010-012-1300-4.
[26]  Liu, F.; Ichihara, S.; Valentine, W.M.; Itoh, K.; Yamamoto, M.; Sheik Mohideen, S.; Kitoh, J.; Ichihara, G. Increased susceptibility of nrf2-null mice to 1-bromopropane-induced hepatotoxicity. Toxicol. Sci. 2010, 115, 596–606, doi:10.1093/toxsci/kfq075.
[27]  Copple, I.M.; Goldring, C.E.; Kitteringham, N.R.; Park, B.K. The nrf2-keap1 defence pathway: Role in protection against drug-induced toxicity. Toxicology 2008, 246, 24–33, doi:10.1016/j.tox.2007.10.029.
[28]  Aleksunes, L.M.; Goedken, M.J.; Rockwell, C.E.; Thomale, J.; Manautou, J.E.; Klaassen, C.D. Transcriptional regulation of renal cytoprotective genes by nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity. J. Pharmacol. Exp. Ther. 2010, 335, 2–12, doi:10.1124/jpet.110.170084.
[29]  Enomoto, A.; Itoh, K.; Nagayoshi, E.; Haruta, J.; Kimura, T.; O’Connor, T.; Harada, T.; Yamamoto, M. High sensitivity of nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of are-regulated drug metabolizing enzymes and antioxidant genes. Toxicol. Sci. 2001, 59, 169–177, doi:10.1093/toxsci/59.1.169.
[30]  Sorrenti, V.; Di Giacomo, C.; Acquaviva, R.; Barbagallo, I.; Bognanno, M.; Galvano, F. Toxicity of ochratoxin a and its modulation by antioxidants: A review. Toxins 2013, 5, 1742–1766, doi:10.3390/toxins5101742.
[31]  Schaaf, G.J.; Nijmeijer, S.M.; Maas, R.F.; Roestenberg, P.; de Groene, E.M.; Fink-Gremmels, J. The role of oxidative stress in the ochratoxin a-mediated toxicity in proximal tubular cells. Biochim. Biophys. Acta 2002, 1588, 149–158, doi:10.1016/S0925-4439(02)00159-X.
[32]  Marin-Kuan, M.; Nestler, S.; Verguet, C.; Bezencon, C.; Piguet, D.; Mansourian, R.; Holzwarth, J.; Grigorov, M.; Delatour, T.; Mantle, P.; et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat. Toxicol. Sci. 2006, 89, 120–134.
[33]  Cavin, C.; Delatour, T.; Marin-Kuan, M.; Holzhauser, D.; Higgins, L.; Bezencon, C.; Guignard, G.; Junod, S.; Richoz-Payot, J.; Gremaud, E.; et al. Reduction in antioxidant defenses may contribute to ochratoxin a toxicity and carcinogenicity. Toxicol. Sci. 2007, 96, 30–39.
[34]  Kumar, R.; Ansari, K.M.; Chaudhari, B.P.; Dhawan, A.; Dwivedi, P.D.; Jain, S.K.; Das, M. Topical application of ochratoxin a causes DNA damage and tumor initiation in mouse skin. PloS ONE 2012, 7, e47280.
[35]  Ramyaa, P.; Krishnaswamy, R.; Padma, V.V. Quercetin modulates ota-induced oxidative stress and redox signalling in hepg2 cells—Up regulation of nrf2 expression and down regulation of nf-kappab and cox-2. Biochim. Biophys. Acta 2013, 1840, 681–692.
[36]  Boesch-Saadatmandi, C.; Wagner, A.E.; Graeser, A.C.; Hundhausen, C.; Wolffram, S.; Rimbach, G. Ochratoxin a impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 2009, 93, 547–554, doi:10.1111/j.1439-0396.2008.00838.x.
[37]  Boesch-Saadatmandi, C.; Loboda, A.; Jozkowicz, A.; Huebbe, P.; Blank, R.; Wolffram, S.; Dulak, J.; Rimbach, G. Effect of ochratoxin a on redox-regulated transcription factors, antioxidant enzymes and glutathione-s-transferase in cultured kidney tubulus cells. Food Chem. Toxicol. 2008, 46, 2665–2671, doi:10.1016/j.fct.2008.04.023.
[38]  Cavin, C.; Holzhaeuser, D.; Scharf, G.; Constable, A.; Huber, W.W.; Schilter, B. Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem. Toxicol. 2002, 40, 1155–1163, doi:10.1016/S0278-6915(02)00029-7.
[39]  Stachurska, A.; Ciesla, M.; Kozakowska, M.; Wolffram, S.; Boesch-Saadatmandi, C.; Rimbach, G.; Jozkowicz, A.; Dulak, J.; Loboda, A. Cross-talk between micrornas, nuclear factor e2-related factor 2, and heme oxygenase-1 in ochratoxin a-induced toxic effects in renal proximal tubular epithelial cells. Mol. Nutr. Food Res. 2013, 57, 504–515.
[40]  Dopp, E.; Muller, J.; Hahnel, C.; Schiffmann, D. Induction of genotoxic effects and modulation of the intracellular calcium level in syrian hamster embryo (she) fibroblasts caused by ochratoxin A. Food Chem. Toxicol. 1999, 37, 713–721, doi:10.1016/S0278-6915(99)00057-5.
[41]  Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013, 1, 45–49, doi:10.1016/j.redox.2012.10.001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413