Recent studies indicate that DNA immunization is powerful in eliciting antigen-specific antibody responses in both animal and human studies. However, there is limited information on the mechanism of this effect. In particular, it is not known whether DNA immunization can also enhance the development of antigen-specific B cell development. In this report, a pilot study was conducted using plague LcrV immunogen as a model system to determine whether DNA immunization is able to enhance LcrV-specific B cell development in mice. Plague is an acute and often fatal infectious disease caused by Yersinia pestis ( Y. pestis). Humoral immune responses provide critical protective immunity against plague. Previously, we demonstrated that a DNA vaccine expressing LcrV antigen can protect mice from lethal mucosal challenge. In the current study, we further evaluated whether the use of a DNA priming immunization is able to enhance the immunogenicity of a recombinant LcrV protein vaccine, and in particular, the development of LcrV-specific B cells. Our data indicate that DNA immunization was able to elicit high-level LcrV antibody responses when used alone or as part of a prime-boost immunization approach. Most significantly, DNA immunization was also able to increase the levels of LcrV-specific B cell development. The finding that DNA immunization can enhance antigen-specific B cell responses is highly significant and will help guide similar studies in other model antigen systems.
References
[1]
Wang, S.; Kennedy, J.S.; West, K.; Montefiori, D.C.; Coley, S.; Lawrence, J.; Shen, S.; Green, S.; Rothman, A.L.; Ennis, F.A.; et al. Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine 2008, 26, 3947–3957, doi:10.1016/j.vaccine.2007.12.060.
[2]
Vaine, M.; Wang, S.; Crooks, E.T.; Jiang, P.; Montefiori, D.C.; Binley, J.; Lu, S. Improved induction of antibodies against key neutralizing epitopes by human immunodeficiency virus type 1gp120 DNA prime-protein boost vaccination compared to gp120 protein-only vaccination. J. Virol. 2008, 82, 7369–7378, doi:10.1128/JVI.00562-08.
[3]
Vaine, M.; Wang, S.; Hackett, A.; Arthos, J.; Lu, S. Antibody responses elicited through homologous or heterologous prime-boost DNA and protein vaccinations differ in functional activity and avidity. Vaccine 2010, 28, 2999–3007, doi:10.1016/j.vaccine.2010.02.006.
[4]
Vaine, M.; Wang, S.; Liu, Q.; Arthos, J.; Montefiori, D.; Goepfert, P.; McElrath, M.J.; Lu, S. Profiles of human serum antibody responses elicited by three leading HIV vaccines focusing on the induction of Env-specific antibodies. PLoS One 2010, 5, e13916.
[5]
Wang, S.; Heilman, D.; Liu, F.; Giehl, T.; Joshi, S.; Huang, X.; Chou, T.H.; Goguen, J.; Lu, S. A DNA vaccine producing LcrV antigen in oligomers is effective in protecting mice from lethal mucosal challenge of plague. Vaccine 2004, 22, 3348–3357, doi:10.1016/j.vaccine.2004.02.036.
[6]
Wang, S.; Joshi, S.; Mboudjeka, I.; Liu, F.; Ling, T.; Goguen, J.D.; Lu, S. Relative immunogenicity and protection potential of candidate Yersinia pestis antigens against lethal mucosal plague challenge in Balb/C mice. Vaccine 2008, 26, 1664–1674, doi:10.1016/j.vaccine.2008.01.024.
[7]
Wang, S.; Goguen, J.D.; Li, F.; Lu, S. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge. Vaccine 2011, 29, 6802–6809, doi:10.1016/j.vaccine.2010.12.062.
[8]
Ledgerwood, J.E.; Wei, C.J.; Hu, Z.; Gordon, I.J.; Enama, M.E.; Hendel, C.S.; McTamney, P.M.; Pearce, M.B.; Yassine, H.M.; Boyington, J.C.; et al. DNA priming and influenza vaccine immunogenicity: Two phase 1 open label randomised clinical trials. Lancet Infect. Dis. 2011, 11, 916–924, doi:10.1016/S1473-3099(11)70240-7.
Josko, D. Yersinia pestis: Still a plague in the 21st century. Clin. Lab. Sci. 2004, 17, 25–29.
[11]
Chanteau, S.; Ratsitorahina, M.; Rahalison, L.; Rasoamanana, B.; Chan, F.; Boisier, P.; Rabeson, D.; Roux, J. Current epidemiology of human plague in madagascar. Microbes Infect. 2000, 2, 25–31, doi:10.1016/S1286-4579(00)00289-6.
[12]
Welch, T.J.; Fricke, W.F.; McDermott, P.F.; White, D.G.; Rosso, M.L.; Rasko, D.A.; Mammel, M.K.; Eppinger, M.; Rosovitz, M.J.; Wagner, D.; et al. Multiple antimicrobial resistance in plague: An emerging public health risk. PLoS One 2007, 2, e309, doi:10.1371/journal.pone.0000309.
Wang, S.; Parker, C.; Taaffe, J.; Solorzano, A.; Garcia-Sastre, A.; Lu, S. Heterologous HA DNA vaccine prime—Inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine 2008, 26, 3626–3633, doi:10.1016/j.vaccine.2008.04.073.
[23]
Cristillo, A.D.; Wang, S.; Caskey, M.S.; Unangst, T.; Hocker, L.; He, L.; Hudacik, L.; Whitney, S.; Keen, T.; Chou, T.H.; et al. Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV-1 vaccine. Virology 2006, 346, 151–168, doi:10.1016/j.virol.2005.10.038.
[24]
Suguitan, A.L., Jr.; Cheng, X.; Wang, W.; Wang, S.; Jin, H.; Lu, S. Influenza H5 hemagglutinin DNA primes the antibody response elicited by the live attenuated influenza a/vietnam/1203/2004 vaccine in ferrets. PLoS One 2011, 6, e21942.
[25]
Wang, S.; Arthos, J.; Lawrence, J.M.; van Ryk, D.; Mboudjeka, I.; Shen, S.; Chou, T.H.; Montefiori, D.C.; Lu, S. Enhanced immunogenicity of gp120 protein when combined with recombinant DNA priming to generate antibodies that neutralize the JR-FL primary isolate of human immunodeficiency virus type 1. J. Virol. 2005, 79, 7933–7937, doi:10.1128/JVI.79.12.7933-7937.2005.
[26]
Wang, S.; Taaffe, J.; Parker, C.; Solorzano, A.; Cao, H.; Garcia-Sastre, A.; Lu, S. Hemagglutinin (HA) proteins from h1 and h3 serotypes of influenza a viruses require different antigen designs for the induction of optimal protective antibody responses as studied by codon-optimized HA DNA vaccines. J. Virol. 2006, 80, 11628–11637, doi:10.1128/JVI.01065-06.
[27]
Wang, S.; Mboudjeka, I.; Goguen, J.D.; Lu, S. Antigen engineering can play a critical role in the protective immunity elicited by Yersinia pestis DNA vaccines. Vaccine 2010, 28, 2011–2019, doi:10.1016/j.vaccine.2009.10.059.
[28]
Lu, S.; Manning, S.; Arthos, J. Antigen engineering in DNA immunization. Methods Mol. Med. 2000, 29, 355–374.
[29]
Wang, S.; Farfan-Arribas, D.J.; Shen, S.; Chou, T.H.; Hirsch, A.; He, F.; Lu, S. Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine. Vaccine 2006, 24, 4531–4540, doi:10.1016/j.vaccine.2005.08.023.
[30]
Feltquate, D.M.; Heaney, S.; Webster, R.G.; Robinson, H.L. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. 1997, 158, 2278–2284.
[31]
Williamson, E.D.; Eley, S.M.; Griffin, K.F.; Green, M.; Russell, P.; Leary, S.E.; Oyston, P.C.; Easterbrook, T.; Reddin, K.M.; Robinson, A.; et al. A new improved sub-unit vaccine for plague: The basis of protection. FEMS Immunol. Med. Microbiol. 1995, 12, 223–230, doi:10.1111/j.1574-695X.1995.tb00196.x.
[32]
Gupta, G.; Ali, R.; Khan, A.A.; Rao, D.N. Evaluation of CD4+/CD8+ T-cell expression and IFN-gamma, perforin secretion for B-T constructs of F1 and V antigens of Yersinia pestis. Int. Immunopharmacol. 2013, 12, 64–73, doi:10.1016/j.intimp.2011.10.012.