全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations

DOI: 10.3390/rs6010352

Keywords: surface solar irradiance, satellite-derived, homogeneity, break detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

A satellite-based climate record of monthly mean surface solar irradiance (SIS) is investigated with regard to possible inhomogeneities in time. The data record is provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF) for the period of 1983 to 2005, covering a disk area between ±70° in latitude and longitude. The Standard Normal Homogeneity Test (SNHT) and two other homogeneity tests are applied with and without the use of reference SIS data (from the Baseline Surface Radiation Network (BSRN) and from the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA -Interim reanalysis. The focus is on the detection of break-like inhomogeneities, which may occur due to satellite or SIS retrieval algorithm changes. In comparison with the few suitable BSRN SIS observation series with limited extension in time (no data before 1992), the CM SAF SIS time series do not show significant inhomogeneities, even though slight discrepancies in the surface measurements appear. The investigation of the full CM SAF SIS domain reveal inhomogeneities related to most of the documented satellite and retrieval changes, but only for relatively small domain fractions (especially in mountainous desert-like areas in Africa). In these regions the retrieval algorithm is not capable of adjusting for the changes of the satellite instruments. For other areas, e.g., Europe, no such breaks in the time series are found. We conclude that the CM SAF SIS data record has to be further assessed and regionally homogenized before climate trend investigations can be conducted.

References

[1]  IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007.
[2]  Ohmura, A. Observed decadal variations in surface solar radiation and their causes. J. Geophys. Res 2009, 114, D00D05.
[3]  Ohmura, A.; Gilgen, H.; Hegner, H.; Mller, G.; Wild, M. Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research. Bull. Am. Meteorol. Soc 1998, 79, 2115–2136.
[4]  Wild, M. Global dimming and brightening: A review. J. Geophys. Res 2009, 114, D00D16.
[5]  Wild, M. Enlightening global dimming and brightening. Bull. Am. Meteorol. Soc 2012, 93, 27–37.
[6]  Cermak, J.; Wild, M.; Knutti, R.; Mishchenko, M.I.; Heidinger, A.K. Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations. Geophys. Res. Lett 2010, 37, L21704.
[7]  Norris, J.R.; Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J. Geophys. Res 2007, 112, D08214.
[8]  Müller, R.W.; Matsoukas, C.; Gratzki, A.; Behr, H.D.; Hollmann, R. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—ALUT based eigenvector hybrid approach. Remote Sens. Environ 2009, 113, 1012–1024.
[9]  Pinker, R.T.; Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol 1992, 31, 194–211.
[10]  Posselt, R.; Mueller, R.; St?ckli, R.; Trentmann, J. Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens. Environ 2012, 118, 186–198.
[11]  Wang, H.; Pinker, R.T. Shortwave radiative fluxes from MODIS: Model development and implementation. J. Geophys. Res 2009, 114, D20201.
[12]  Zhang, Y.-C.; Rossow, W.B.; Lacis, A.A. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets 1. Method and sensitivity to input data uncertainties. J. Geophys. Res 1995, 100, 1149–1165.
[13]  Zhang, Y.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res 2004, 109, D19105.
[14]  Stackhouse, P.W., Jr.; Gupta, S.K.; Cox, S.; Zhang, T.; Mikovitz, J.C.; Hinkelman, L.M. 24.5-year SRB data set released. GEWEX News 2011, 21, 10–12.
[15]  Rossow, W.B.; Schiffer, R. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc 1999, 80, 2261–2287.
[16]  Peterson, T.C.; Easterling, D.R.; Karl, T.R.; Groisman, P.; Nicholls, N.; Plummer, N.; Torok, S.; Auer, I.; Boehm, R.; Gullett, D.; et al. Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol 1998, 18, 1493–1517.
[17]  Reeves, J.; Chena, J.; Wang, X.L.; Lund, R.; Lu, Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Clim 2007, 46, 900–915.
[18]  Venema, V.K.C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J.A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; et al. Benchmarking homogenization algorithms for monthly data. Clim. Past 2012, 8, 89–115.
[19]  Wijngaard, J.B.; Tank, A.M.G.K.; K?nnen, G.P. Homogeneity of the 20th century European daily temperature and precipitation series. Int. J. Climatol 2003, 23, 679–692.
[20]  Moberg, A.; Alexandersson, H. Homogenization of swedish temperature data. part I: Homogenized gridded air temperature compared with a subset of global gridded air temperature since 1861. Int. J. Climatol 1997, 17, 35–54.
[21]  Guentchev, G.; Barsugli, J.J.; Eischeid, J. Homogeneity of gridded precipitation datasets for the Colorado river basin. J. Appl. Meteorol. Clim 2010, 49, 2404–2415.
[22]  Ferguson, C.; Villarini, G. Detecting inhomogeneities in the twentieth century reanalysis over the central United States. J. Geophys. Res 2012, 117, D05123.
[23]  Sanchez-Lorenzo, A.; Wild, M.; Trentmann, J. Validation and stability assessment of the monthly mean CM SAF surface solar radiation data set over Europe against a homogenized surface dataset (1983–2005). Remote Sens. Environ 2013, 134, 355–366.
[24]  Gilgen, H.; Wild, M.; Ohmura, A. Means and trends of shortwave irradiance at the surface estimated from GEBA. J. Clim 1998, 11, 2042–2061.
[25]  Beyer, H.G.; Costanzo, C.; Heinemann, D. Modifications of the Heliosat procedure for irradiance estimates from satellite images. Solar Energy 1996, 56, 207–212.
[26]  Cano, D.; Monget, J.M.; Albuisson, M.; Guillard, H.; Regas, N.; Wald, L. A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy 1986, 37, 31–39.
[27]  Hammer, A.; Heinemanna, D.; Hoyer, C.; Kuhlemann, R.; Lorenz, E.; Müller, R.; Beyer, H.G. Solar energy assessment using remote sensing technologies. Remote Sens. Environ 2003, 86, 423–432.
[28]  Rigollier, C.; Lefèvre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy 2004, 77, 159–169.
[29]  Diekmann, F.-J.; Happ, S.; Rieland, M.; Benesch, W.; Czeplak, G.; Kasten, F. An operational estimate of global solar irradiance at ground level from METEOSAT data: Results from 1985 to 1987. Meteorol. Rdsch 1988, 41, 65–79.
[30]  Rigollier, C.; Lefèvre, M.; Blanc, P.; Wald, L. The operational calibration of images taken in the visible channel of the meteosat series of satellites. J. Atmos. Ocean. Technol 2002, 19, 1285–1293.
[31]  Raschke, E.; Kinne, S.; Stackhouse, P.W. Gewex Radiative Flux Assessment (rfa). WCRP Report No. 19/2012.2012; World Climate Research Programme (WCRP): Geneva, Switzerland, 2012. Available online: http://www.wcrp-climate.org/documents/GEWEX%20RFA-Volume%201-report.pdf (accessed on 20 December 2013).
[32]  Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E.G.; Long, C.N.; Zhang, T. Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech 2011, 4, 339–354.
[33]  Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc 2011, 137, 553–597.
[34]  Simmons, A.J.; Willett, K.M.; Jones, P.; Thorne, P.W.; Dee, D.P. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res.: Atmos 2010, 115, D01110.
[35]  Alexandersson, H. A homogeneity test applied to precipitation data. Int. J. Climatol 1986, 6, 661–675.
[36]  Alexandersson, H.; Moberg, A. Homogenization of swedish temperature data. part I: Homogeneity test for linear trends. Int. J. Climatol 1997, 17, 25–34.
[37]  Buishand, T. Some methods for testing the homogeneity of rainfall records. J. Hydrol 1982, 58, 11–27.
[38]  Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat 1979, 28, 126–135.
[39]  Hawkins, D.M. Testing a sequence of observations for a shift in location. J. Am. Stat. Assoc 1977, 72, 180–186.
[40]  Easterling, D.R.; Peterson, T.C. A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol 1995, 15, 369–377.
[41]  Govaerts, Y.M.; Clerici, M.; Clerbaux, N. Operational calibration of the meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens 2004, 42, 1900–1914.
[42]  Kr?henmann, S.; Obregon, A.; Müller, R.; Trentmann, J.; Ahrens, B. A satellite-based surface radiation climatology derived by combining climate data records and near-real-time data. Remote Sens 2013, 5, 4693–4718.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133