全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Resources  2013 

Tree Crops, a Permanent Agriculture: Concepts from the Past for a Sustainable Future

DOI: 10.3390/resources2040457

Keywords: perennial crops, sustainable agriculture, plant breeding, genetic resources, food security, energy security, land restoration

Full-Text   Cite this paper   Add to My Lib

Abstract:

J. Russell Smith (1874–1966), a professor of geography at Columbia University, witnessed the devastation of soil erosion during his extensive travels. He first published his landmark text, Tree Crops, A Permanent Agriculture in 1929, in which he described the value of tree crops for producing food and animal feed on sloping, marginal, and rocky soils as a sustainable alternative to annual crop agriculture less suited to these lands. A cornerstone of his thesis was using wide germplasm collection and plant breeding to improve this largely underutilized and genetically unexploited group of plants to develop locally adapted, high-yielding cultivars for the many climatic zones of North America. Smith proposed an establishment of “Institutes of Mountain Agriculture” to undertake this work. For a variety of reasons, though, his ideas were not implemented to any great degree. However, our growing population’s increasing demands on natural resources and the associated environmental degradation necessitate that Smith’s ideas be revisited. In this review, his concepts, supported by modern scientific understanding and advances, are discussed and expanded upon to emphasize their largely overlooked potential to enhance world food and energy security and environmental sustainability. The discussion leads us to propose that his “institutes” be established worldwide and with an expanded scope of work.

References

[1]  Gill, V.; Dale, T. Topsoil and Civilization; University of Oklahoma Press: Norman, OK, USA, 1974.
[2]  Perlin, J. A Forest Journey, the Role of Wood in the Development of a Civilization; Harvard University Press: Cambridge, MA, USA, 1989.
[3]  Hillel, D. Out of the Earth—Civilization and the Life of the Soil; University of California Press: Berkeley, CA, USA, 1991.
[4]  Evans, L.T. Feeding the Ten Billion—Plants and Population Growth; Cambridge University Press: Cambridge, UK, 1998.
[5]  Williams, M. Deforesting the Earth—From Prehistory to Global Crisis; University of Chicago Press: Chicago, IL, USA, 2003.
[6]  Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627, doi:10.1126/science.1097396.
[7]  Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509, doi:10.1126/science.277.5325.504.
[8]  Smith, J.R. Tree Crops: A Permanent Agriculture; Devin-Adair: New York, NY, USA, 1950.
[9]  Food and Agriculture Organization of the United Nations Web Page. Available online: http://faostat.fao.org (accessed on 27 March 2013).
[10]  About Us. United States Department of Agriculture. Available online: http://www.ars.usda.gov/AboutUs/AboutUs.htm?modecode=66-06-05-00 (accessed on 16 August 2013).
[11]  Xu, Y.X.; Hanna, M.A. Evaluation of Nebraska hybrid hazelnuts: Nut/kernel characteristics, kernel proximate composition, and oil and protein properties. Ind. Crops Prod. 2010, 31, 84–91, doi:10.1016/j.indcrop.2009.09.005.
[12]  Reid, W.; Coggeshall, M.V.; Hunt, K.L. Black walnut cultivars for nut production. Annu. Rep. North. Nut Grow. Assoc. 2004, 95, 65–77.
[13]  Mehlenbacher, S.A. Progress and prospects in nut breeding. Acta Hortic. 2003, 622, 57–79.
[14]  Fruit & Tree Nuts. United States Department of Agriculture. Available online: http://www.ers.usda.gov/topics/crops/fruit-tree-nuts/background.aspx#.UeMQXKx4lgE (accessed on 26 May 2012).
[15]  MacDaniels, L.H.; Lieberman, A.S. Tree crops: A neglected source of food and forage from marginal lands. Bioscience 1979, 29, 173–175, doi:10.2307/1307798.
[16]  Brown, L.R.; Renner, M.; Halweil, B. Vital Signs 2000,the Environmental Trends That Are Shaping Our Future; Worldwatch Institute & W. W. Norton & Company: New York, NY, USA, 2000.
[17]  Rosenzweig, C.; Hillel, D. Climate Changes and the Global Harvest—Potential Impacts of the Greenhouse Effect on Agriculture; Oxford University Press: Oxford, UK, 1998.
[18]  Lal, R.; Griffin, M.; Apt, J.; Love, L.; Morgan, M.G. Managing soil carbon. Science 2004, 304, 393, doi:10.1126/science.1093079.
[19]  Meehl, G.A.; Washington, W.M.; Collins, W.D.; Arblaster, J.M.; Hu, A.; Buja, L.E.; Strand, W.G.; Teng, H. How much more global warming and sea level rise? Science 2005, 307, 1769–1772, doi:10.1126/science.1106663.
[20]  Cohen, J.E. Human population: The next half century. Science 2003, 302, 1172–1175, doi:10.1126/science.1088665.
[21]  Conway, G. The Doubly Green Revolution: Food for All in the Twenty-First Century; Cornell University Press: Ithaca, NY, USA, 1998.
[22]  Organization for Economic Co-operation and Development Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook: 2006–2015. Available online: ftp://ftp.fao.org/docrep/fao/009/a0621e/a0621e00.pdf (accessed on 27 March 2013).
[23]  Pretty, J.N. Regenerating Agriculture—Policies and Practices for Sustainability and Self-Reliance; Joseph Henry Press: Washington, DC, USA, 1995.
[24]  Federoff, N.V.; Cohen, J.E. Plants and population: Is there time? Proc. Nat. Acad. Sci. USA 1999, 96, 5903–5907, doi:10.1073/pnas.96.11.5903.
[25]  Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Nat. Acad. Sci. USA 1999, 96, 5995–6000, doi:10.1073/pnas.96.11.5995.
[26]  Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhammer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284, doi:10.1126/science.1057544.
[27]  Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–676, doi:10.1038/nature01014.
[28]  Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358, doi:10.1146/annurev.energy.28.040202.122858.
[29]  Glover, J.D. The necessity and possibility of perennial grain production systems. Renew. Agric. Food Syst. 2005, 20, 1–4, doi:10.1079/RAF200499.
[30]  Conway, G.R.; Pretty, J.N. Unwelcome Harvest—Agriculture and Pollution; Earthscan: London, UK, 1991.
[31]  Randall, G.W.; Huggins, D.R.; Russelle, M.P.; Fuchs, D.J.; Nelson, W.W.; Anderson, J.L. Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa, and row crop systems. J. Environ. Qual. 1997, 26, 1240–1247.
[32]  Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Saffouri, R.; Blair, R. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123, doi:10.1126/science.267.5201.1117.
[33]  Pimentel, D.; Houser, J.; Preiss, E.; White, O.; Fang, H.; Mesnick, L.; Barsky, T.; Tariche, S.; Schreck, J.; Alpert, S. Water resources: Agriculture, the environment, and society. Bioscience 1997, 47, 97–106, doi:10.2307/1313020.
[34]  Postel, S.L. Pillar of Sand: Can the Irrigation Miracle Last?; W. W. Norton & Company: New York, NY, USA, 1999.
[35]  Randall, G.W.; Mulla, D.J. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J. Environ. Qual. 2001, 30, 337–344, doi:10.2134/jeq2001.302337x.
[36]  Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574, doi:10.1126/science.1111772.
[37]  Harlan, J.R. The Living Fields: Our Agricultural Heritage; Cambridge University Press: New York, NY, USA, 1998.
[38]  Stokstad, E. Deadly wheat fungus threatens world’s breadbaskets. Science 2007, 315, 1786–1787, doi:10.1126/science.315.5820.1786.
[39]  Pennisi, E. Armed and dangerous. Science 2010, 327, 804–805, doi:10.1126/science.327.5967.804.
[40]  Deffeyes, K.S. Hubbert’s Peak—The Impending World Oil Shortage; Princeton University Press: Princeton, NJ, USA, 2003.
[41]  Deffeyes, K.S. Beyond Oil: The View from Hubbert’s Peak; Macmillan: London, UK, 2006.
[42]  Hall, D.O.; Mynick, H.E.; Williams, R.H. Cooling the greenhouse with bioenergy. Nature 1991, 353, 11–12, doi:10.1038/353011a0.
[43]  Hall, D.O.; Scrase, J.I. Will biomass be the environmentally friendly fuel of the future? Biomass Bioenerg. 1998, 15, 357–637, doi:10.1016/S0961-9534(98)00030-0.
[44]  Sims, R.E.H. Climate Change Solutions from Biomass, Bioenergy, and Biomaterials. Available online: http://www.ecommons.cornell.edu/bitstream/1813/10341/1/Invited%20Overview%20Ralph%20Sims%209Sept2003.pdf (accessed on 27 March 2013).
[45]  Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972, doi:10.1126/science.1100103.
[46]  Perlack, R.D.; Wright, L.L.; Turhollow, A.F.; Graham, R.L.; Stokes, B.J.; Erbach, D.C. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2005.
[47]  Brown, L.R. Plan B: 2.0 Rescuing a Planet Under Stress and a Civilization in Trouble; W. W. Norton & Company: New York, NY, USA, 2006.
[48]  Moreira, J.R. Global biomass energy potential. Mitig. Adapt. Strateg. Glob. Clim. Chang. 2006, 11, 313–341, doi:10.1007/s11027-005-9003-8.
[49]  Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489, doi:10.1126/science.1114736.
[50]  Somerville, C. The billion-ton biofuels vision. Science 2006, 312, 1277, doi:10.1126/science.1130034.
[51]  Assadourian, E.; Bender, M.; Berner, C.; Carrus, K.; Chafe, Z.; Eckerle, K.; Flavin, C.; French, H.; Gardner, G.; Greer, L.; et al. Vital Signs 2006–2007; Worldwatch Institute & W. W. Norton & Company: New York, NY, USA, 2006; p. 23.
[52]  Brown, L.R.; Flavin, C.; Kane, H. Vital Signs 1996; Worldwatch Institute & W. W. Norton & Company: New York, NY, USA, 1996; p. 25.
[53]  Production of Cereals and Share in World. Available online: ftp://ext-ftp.fao.org/ES/Reserved/essb/ess/ftp_essb/john&Ozan/pdf/b01.pdf (accessed on 20 February 2012).
[54]  Crop Prospects and Food Situation. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/docrep/009/J8104e/j8104e03.htm (accessed on 20 February 2012).
[55]  Richardson, S.D. Forests and Forestry in China; Island Press: Washington, DC, USA, 1990.
[56]  Zhang, P.; Shao, G.; Zhao, G.; Master, D.L.; Parker, G.R.; Dunning, J.B., Jr.; Li, Q. China’s forestry policy for the 21st century. Science 2000, 288, 2135–2136, doi:10.1126/science.288.5474.2135.
[57]  State of the World Forests. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/docrep/007/y5574e/y5574e00.htm (accessed on 27 March 2013).
[58]  An edible landscape can be defined as the use of various food-producing plants in the residential landscape in place of, or in combination with, more traditional ornamental landscape plants. Edible landscapes could combine adapted perennial fruit and nut trees, berry bushes, brambles and vines, vegetables, herbs, etc., along with other plants, into attractive and functional designs. Plantings provide abundant food and other related products of a diversity of types over the growing season, as well as shade and beauty. Edible landscapes are not a new concept in areas of the world that have undergone repeated food shortages. Several of the authors were greatly impressed by the diversity and density of edible plants found in the residential landscapes across much of Eastern Europe, southern Russia, and Central Asia, when travelling in these regions for germplasm collections and other research activities.
[59]  Cassman, K.G.; Harwood, R.R. The nature of agricultural systems: Food security and environmental balance. Food Policy 1995, 20, 439–454, doi:10.1016/0306-9192(95)00037-F.
[60]  Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555, doi:10.1126/science.1106049.
[61]  Mukunda, H.S.; Dasappa, S.; Shrinivasa, U. Open-top wood gasifiers. In Renewable Energy Sources for Fuels and Electricity; Johansson, T.B., Burnham, L., Eds.; Island Press: Washington, DC, USA, 1993; pp. 699–728.
[62]  Williams, R.H.; Larson, E.D. Advanced gasification-based biomass power generation. In Renewable Energy Sources for Fuels and Electricity; Johansson, T.B., Burnham, L., Eds.; Island Press: Washington, DC, USA, 1993; pp. 729–785.
[63]  Bridgwater, A.V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem. 1999, 30, 1479–1493, doi:10.1016/S0146-6380(99)00120-5.
[64]  Chynoweth, D.P. Renewable biomethane from land and ocean energy crops and organic wastes. HortScience 2005, 40, 283–286.
[65]  Jackson, R.B.; Schlesinger, W.H. Curbing the U.S. carbon deficit. Proc. Nat. Acad. Sci. USA 2004, 101, 15827–15829, doi:10.1073/pnas.0403631101.
[66]  Hall, D.O.; Rosillo-Calle, R.; Williams, R.H.; Woods, J. Biomass for bioenergy: Supply prospects. In Renewable Energy Sources for Fuels and Electricity; Johansson, T.B., Burnham, L., Eds.; Island Press: Washington, DC, USA, 1993; pp. 592–651.
[67]  Hakkila, P.; Parikka, M. Fuel resources from the forest. In Bioenergy from Sustainable Energy; Richardson, J., Bj?rheden, R., Hakkila, P., Lowe, A.T., Smith, C.T., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 19–48.
[68]  Tilman, D.J.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600, doi:10.1126/science.1133306.
[69]  Curtis, F.; Ehrenfeld, D. The new geography of trade: Globalization’s decline may stimulate local recovery. Solut. J. 2012, 3, 35–40.
[70]  Moreira, J.R. Sugarcane for energy—Recent results and progress in Brazil. Energy Sustain. Dev. 2000, 4, 43–54, doi:10.1016/S0973-0826(08)60252-5.
[71]  Basiron, Y. Palm oil production through sustainable plantations. Eur. J. Lipid Sci. Technol. 2007, 109, 289–295, doi:10.1002/ejlt.200600223.
[72]  Corley, R.H.V. Oil palm: A major tropical crop. Burotrop Bull. 2003, 19, 5–8.
[73]  Danielsen, F.; Beukema, H.; Burgess, N.D.; Parish, F.; Brühl, C.A.; Donald, P.F.; Murdiyarso, D.; Phalan, B.; Reijnders, L.; Struebig, M.; et al. Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate. Conserv. Biol. 2009, 23, 348–358, doi:10.1111/j.1523-1739.2008.01096.x.
[74]  Koh, L.P.; Wilcove, D.S. Oil palm: Disinformation enables deforestation. Trends Ecol. Evol. 2009, 24, 67–68, doi:10.1016/j.tree.2008.09.006.
[75]  Koh, L.P.; Wilcov, D.S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 2008, 1, 60–64, doi:10.1111/j.1755-263X.2008.00011.x.
[76]  Laurance, W.F.; Koh, L.P.; Butler, R.; Sodhi, N.S.; Bradshaw, C.J.A.; Neidel, J.D.; Consunji, H.; Mateo, V.J. Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv. Biol. 2010, 24, 377–381, doi:10.1111/j.1523-1739.2010.01448.x.
[77]  Bhagwat, S.A.; Willis, K.J. Agroforestry as a solution to the oil palm debate. Conserv. Biol. 2008, 22, 1368–1369, doi:10.1111/j.1523-1739.2008.01026.x.
[78]  Stone, R. Can palm oil plantations come clean? Science 2013, 317, 1491, doi:10.1126/science.317.5844.1491.
[79]  Naylor, R.L.; Falcon, W.P.; Goodman, R.M.; Jahn, M.M.; Sengooba, T.; Tefera, H.; Nelson, R.J. Biotechnology in the developing world: A case for increased investments in orphan crops. Food Policy 2004, 29, 15–44, doi:10.1016/j.foodpol.2004.01.002.
[80]  Falcon, W.P.; Naylor, R.L. Rethinking food security for the 21st century. Am. J. Agric. Econ. 2005, 87, 1113–1127, doi:10.1111/j.1467-8276.2005.00797.x.
[81]  Kean, S. Besting Johnny Appleseed. Science 2010, 328, 301–303, doi:10.1126/science.328.5976.301.
[82]  The Fagaceae Genome Web Home Page. Available online: http://www.fagaceae.org (accessed on 26 September 2013).
[83]  Genome Database for Rosaceae Home Page. Available online: http://www.rosaceae.org (accessed on 26 September 2013).
[84]  International Populus Genome Consortium Home Page. Available online: http://www.ornl.gov/sci/ipgc (accessed on 26 September 2013).
[85]  The Generic Genome Browser. Available online: http://hazelnut.cgrb.oregonstate.edu/ (accessed on 26 September 2013).
[86]  Jannink, J.L.; Lorenz, A.J.; Iwata, H. Genomic selection in plant breeding: From theory to practice. Brief. Funct. Genomics 2010, 9, 166–177, doi:10.1093/bfgp/elq001.
[87]  Tuskan, G.A.; DiFazio, S.P.; Teichmann, T. Poplar genomics is getting popular: The impact of the poplar genome project on tree research. Plant Biol. 2004, 6, 2–4, doi:10.1055/s-2003-44715.
[88]  Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604, doi:10.1126/science.1128691.
[89]  Foster, G.R.; Young, R.A.; Ronkens, M.J.M.; Onstad, C.A. Processes of soil erosion by water. In Soil Erosion and Crop Productivity; Stewart, F.R.F., Stewart, B.A., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1985; pp. 137–162.
[90]  Troeh, F.R.; Hobbs, J.A.; Donahue, R.L. Soil and Water Conservation, 2nd ed. ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1991.
[91]  Sanchez, P.A.; Buresh, R.J.; Leakey, R.R.B. Trees, soils, and food security. Philos. Trans. Biol. Sci. 1997, 352, 949–960, doi:10.1098/rstb.1997.0074.
[92]  Ryan, D.F.; Bormann, F.H. Nutrient resorption in northern hardwood forests. BioScience 1982, 32, 29–32, doi:10.2307/1308751.
[93]  Braun, L.C.; Gillman, J.H.; Russelle, M.P. Fertilizer nitrogen timing and uptake efficiency of hybrid hazelnuts in the Upper Midwest, USA. HortScience 2009, 44, 1688–1693.
[94]  Leakey, R.R.B.; Tomich, T.P. Domestication of tropical trees: From biology to economics and policy. In Agroforestry in Sustainable Agricultural Systems; Buck, L.E., Lassoie, J.P., Fernanders, E.C.M., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 319–338.
[95]  Cox, T.S.; Bender, M.; Picone, C.; van Tassel, D.L.; Holland, J.B.; Brummer, E.C.; Zoeller, B.E.; Paterson, A.H.; Jackson, W. Breeding perennial grain crops. Crit. Rev. Plant Sci. 2002, 21, 59–91, doi:10.1080/0735-260291044188.
[96]  Cox, T.S.; Glover, J.D.; van Tassel, D.L.; Cox, C.M.; DeHaan, L.R. Prospects for developing perennial grain crops. Bioscience 2006, 56, 649–659, doi:10.1641/0006-3568(2006)56[649:PFDPGC]2.0.CO;2.
[97]  Corley, R.H.V.; Tinker, P.B.H. The Oil Palm; Blackwell Science: Malden, MA, USA, 2003.
[98]  DeHaan, L.R.; van Tassel, D.L.; Cox, T.S. Perennial grain crops: A synthesis of ecology and plant breeding. Renew. Agric. Food Syst. 2005, 20, 5–14, doi:10.1079/RAF200496.
[99]  Glover, J.D. Harvested perennial grasslands: Ecological models for farming’s perennial future. Agric. Ecosyst. Environ. 2010, 137, 1–2, doi:10.1016/j.agee.2010.01.014.
[100]  Glover, J.D.; Culman, S.W.; DuPont, S.T.; Broussard, W.; Young, L.; Mangan, M.E.; Mai, J.G.; Crews, T.E.; DeHaan, L.R.; Buckley, D.H.; et al. Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric. Ecosyst. Environ. 2010, 137, 3–12, doi:10.1016/j.agee.2009.11.001.
[101]  Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience 2001, 51, 227–234, doi:10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2.
[102]  Crews, T.E. Perennial crops and endogenous nutrient supplies. Renew. Agric. Food Syst. 2005, 20, 25–37, doi:10.1079/RAF200497.
[103]  Rabalais, N.N.; Turner, R.E.; Wiseman, W.J., Jr. Gulf of Mexico hypoxia, a.k.a. “The Dead Zone”. Annu. Rev. Ecol. Syst. 2002, 33, 235–263, doi:10.1146/annurev.ecolsys.33.010802.150513.
[104]  Funk, C.R.; White, J.F., Jr. Use of natural and transformed endophytes for turf improvement. In Endophyte/Grass Interactions; Hill, N., Bacon, C.W., Eds.; Plenum Press: New York, NY, USA, 1997; pp. 229–239.
[105]  Postgate, J.R. The Fundamentals of Nitrogen Fixation; Cambridge University Press: New York, NY, USA, 1982.
[106]  Saito, M.; Marumoto, T. Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and the future prospects. Plant Soil 2002, 244, 273–279, doi:10.1023/A:1020287900415.
[107]  Emerich, D.W.; Krishnan, H.B. Nitrogen Fixation in Crop Production; Agronomy Monograph Series 52; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America (ASA-CSSA-SSSA): Madison, WI, USA, 2009.
[108]  Fischer, R.A.; Edmeades, G.O. Breeding and cereal yield progress. Crop Sci. 2010, 50, S85–S98.
[109]  Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34, doi:10.1126/science.1234485.
[110]  Sanchez, P.A.; Swaminathan, M.S. Cutting world hunger in half. Science 2005, 307, 357–359, doi:10.1126/science.1109057.
[111]  Keatinge, J.D.H.; Waliyar, F.; Jamnadas, R.H.; Moustafa, A.; Andrade, M.; Drechsel, P.; Hughes, J.D.A.; Kadirvel, P.; Luther, K. Relearning old lessons for the future of food—By bread alone no longer: Diversifying diets with fruits and vegetables. Crop Sci. 2010, 50, S-51–S-62.
[112]  Phillips, R.L. Mobilizing science to break yield barriers. Crop Sci. 2010, 50, S-99–S-108, doi:10.2135/cropsci2009.09.0525.
[113]  Sanchez, P.A. Soil fertility in Africa. Science 2002, 295, 2019–2020, doi:10.1126/science.1065256.
[114]  Lehmann, J.; da Silva, J.P., Jr.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357, doi:10.1023/A:1022833116184.
[115]  Lehmann, J.; Kern, D.C.; German, L.A.; McCann, J.; Martins, G.C.; Moreira, A. Soil fertility and production potential. In Amazonian Dark Earths: Origin, Properties, Management; Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 105–124.
[116]  Jackson, W. New Roots for Agriculture; University of Nebraska Press: Lincoln, NE, USA, 1980.
[117]  Wagoner, P. Perennial grain development: Past efforts and potential for the future. Crit. Rev. Plant Sci. 1990, 9, 381–408, doi:10.1080/07352689009382298.
[118]  Waggoner, P. Perennial grain: New use for intermediate wheatgrass. J Soil Water Conserv. 1990, 45, 81–82.
[119]  Pimentel, D.; Jackson, W.; Bender, M.; Pickett, W. Perennial grains: An ecology of crops. Interdiscip. Sci. Rev. 1986, 11, 42–49, doi:10.1179/030801886789799809.
[120]  Jakubziner, M.M. New Wheat Species. In Proceedings of the 1st International Wheat Genetics Symposium, Winnipeg, Canada, 11–15 August 1959; pp. 207–220.
[121]  Vinall, H.N.; Hein, M.A. Breeding miscellaneous grasses. In Yearbook of Agriculture 1937; U.S. Department of Agriculture: Washington, DC, USA, 1937; p. 1059.
[122]  Scheinost, P.L.; Lammer, D.L.; Cai, X.; Murray, T.; Jones, S.S. Perennial wheat: The development of a sustainable cropping system for the U.S., Pacific Northwest. Am. J. Altern. Agric. 2001, 16, 147–151, doi:10.1017/S0889189300009115.
[123]  Bell, L.W.; Byrne, F.; Ewing, M.A.; Wade, L.J. A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agric. Syst. 2008, 96, 166–174, doi:10.1016/j.agsy.2007.07.007.
[124]  Piper, J.K. Growth and seed yield of three perennial grains within monocultures and mixed stands. Agric. Ecosyst. Environ. 1998, 68, 1–11, doi:10.1016/S0167-8809(97)00097-2.
[125]  Sculte, L.A.; Liebman, M.; Asbjornsen, H.; Crow, T.R. Agroecosystem restoration through strategic integration of perennials. J. Soil Water Conserv. 2006, 61, 164–169.
[126]  Pimentel, D.; Cerasale, D.; Stanley, R.C.; Perlman, R.; Newman, E.M.; Brent, L.C.; Mullan, A.; Chang, D.T.I. Annual vs perennial grain production. Agric. Ecosyst. Environ. 2012, 161, 1–9, doi:10.1016/j.agee.2012.05.025.
[127]  Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased food and ecosystem security via perennial grains. Science 2010, 328, 1638–1639, doi:10.1126/science.1188761.
[128]  Pimentel, D.; Wilson, C.; McCullum, C.; Huang, R.; Dwen, P.; Flack, J.; Tran, Q.; Saltman, T.; Cliff, B. Economic and environmental effects of biodiversity. BioScience 1997, 47, 747–757, doi:10.2307/1313097.
[129]  Jackson, W. Natural systems agriculture: A truly radical alternative. Agric. Ecosyst. Environ. 2002, 88, 111–117, doi:10.1016/S0167-8809(01)00247-X.
[130]  Tilman, D.J.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845, doi:10.1126/science.1060391.
[131]  Tilman, D.J.; Reich, P.B.; Knops, J.M.H. Biodiversity and ecosystem stability in a decade long grassland experiment. Nature 2006, 441, 629–632, doi:10.1038/nature04742.
[132]  Rosengarten, F., Jr. The Book of Edible Nuts; Walker & Company: New York, NY, USA, 1984.
[133]  Garret, H.E.; Harper, L.S. The science and practice of black walnut agroforestry in Missouri, USA. In Agroforestry in Sustainable Agricultural Systems; Buck, L.E., Lassoie, J.P., Fernanders, E.C.M., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 97–110.
[134]  Thompson, M.M.; Lagerstedt, H.B.; Mehlenbacher, S.A. Hazelnuts. In Fruit Breeding; Janick, J., Moore, J.N., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 1996; Volume 3, pp. 125–184.
[135]  Mamadjanov, D.K. Walnut fruit forests and diversity of walnut trees (Juglans regia L.) in Kyrgyzstan. Acta Hort. 2006, 705, 173–176.
[136]  Alasalvar, C.; Shahidi, F. Tree Nuts: Composition, Phytochemicals, and Health Effects; CRC Press: Boca Raton, FL, USA, 2009.
[137]  Reid, W. Eastern black walnut: Potential for commercial nut producing cultivars. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 327–331.
[138]  Thompson, T.E.; Madden, G.D. Pecans. In A Guide to Nut Tree Culture in North America; Fulbright, D.W., Ed.; Northern Nut Growers Association: Hamden, CT, USA, 2003; Volume 1, pp. 79–105.
[139]  Sparks, D. Pecan Cultivars—The Orchard’s Foundation; Pecan Production Innovations: Watkinsville, GA, USA, 1992.
[140]  Grauke, L.J.; Thompson, T.E. Pecans and hickories. In Fruit Breeding; Janick, J., Moore, J.N., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 1996; pp. 185–240.
[141]  McGranahan, G.; Leslie, C. Walnuts (Juglans). In Genetic Resources of Temperate Fruit and Nut Crops; Moore, J.N., Ballington, J.R., Eds.; International Society for Horticultural Science: Leuven, Belgium, 1991; pp. 907–951.
[142]  Tsao, R.; Li, L. Phytochemical profiles and potential health benefits of heartnut (Juglans ailantifolia var. cordiformis): A comparison with the common walnut (Juglans regia L.). In Tree Nuts—Composition, Phytochemicals and Health Effects; Alasalvar, C., Shahidi, F., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 237–248.
[143]  McGranahan, G.; Leslie, C. Breeding walnuts (Juglans regia). In Breeding Plantation Tree Crops: Temperate Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2009; pp. 254–278.
[144]  Leslie, C.A.; McGranahan, G.H. The origin of the walnut. In Walnut Production Manual; Ramos, D., Ed.; University of California Agriculture and Natural Resources Publications: Richmond, CA, USA, 1998; pp. 3–7.
[145]  O’Rourke, F.L.S. The Carpathian (Persian) walnut. In Handbook of North American Nut Trees; Jaynes, R.A., Ed.; Northern Nut Growers Association: Geneva, NY, USA, 1969; pp. 232–239.
[146]  McGranahan, G.H.; Leslie, C. Advances in genetic improvement of walnut at the University of California, Davis. Acta Hort 2006, 705, 117–122.
[147]  Thompson, M.M. Exploration and exploitation of new fruit and nut germplasm. In New Crops; Janick, J., Simon, J.E., Eds.; John Wiley and Sons: New York, NY, USA, 1993; pp. 155–160.
[148]  Popov, S.I. Diversity of walnut in the walnut-fruit forests and its practical value. In Biodiversity and Sustainable Use of Kyrgyzstan’s Walnut-Fruit Forests; Blaser, J., Carter, J., Gilmour, D., Eds.; 1995; pp. 117–119.
[149]  Germain, E.; Delort, F.; Kanivets, V. Precocious maturing walnut populations originating from Central Asia: Their behavior in France. Acta Hort 1997, 422, 83–89.
[150]  Forde, H.I.; McGranahan, G.H. Walnuts. In Fruit Breeding; Janick, J., Moore, J.N., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 1996; Volume 3, pp. 241–273.
[151]  Vahdati, K.; McKenna, J.R.; Dandekar, A.M.; Leslie, C.A.; Uratsu, S.L.; Hackett, W.P.; Negri, P.; McGranahan, G.H. Rooting and other characteristics of a transgenic walnut hybrid (Juglans hindsii × J. regia) rootstock expressing rolABC. J. Am. Soc. Hortic. Sci. 2002, 127, 724–728.
[152]  Dangl, G.S.; Woeste, K.; Aradhya, M.K.; Koehmstedt, A.; Simon, C.; Potter, D.; Leslie, C.A.; McGranahan, G. Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J. Am. Soc. Hortic. Sci. 2005, 130, 348–354.
[153]  Molnar, T.J.; Zaurov, D.E.; Capik, J.M.; Eisenman, S.W.; Ford, T.; Nikolyi, L.V.; Funk, C.R. Persian walnuts (Juglans regia L.) in Central Asia. Annu. Rep. North. Nut. Grow. Assoc. 2011, 101, 56–69.
[154]  Pollock, S.; Perez, A. Fruit and Tree Nuts Situation and Outlook Yearbook; U.S. Department of Agriculture: Washington, DC, USA, 2005.
[155]  Simopoulos, A.P. Omega-3 fatty acids in wild plants, nuts and seeds. Asia Pac. J. Clin. Nutr. 2002, 11, S163–S173, doi:10.1046/j.1440-6047.11.s.6.5.x.
[156]  Gleason, H.A.; Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada; New York Botanical Garden: Bronx, NY, USA, 1998.
[157]  Prindle, J. Black walnut crop purchased by Hammons Products Company 2007–2009. Hammons Products Company: Stockton, MO, USA, 2010.
[158]  Chenoweth, B. Black Walnut—The History, Use, and Unrealized Potential of a Unique American Renewable Natural Resource; Sagamore Publishing: Champaign, IL, USA, 1995.
[159]  Victory, E.R. History of black walnut genetics research in North America. In , Proceedings of the 6th Walnut Council Research Symposium, Lafayette, IN, USA, 25–28 July 2004; Michler, C.H., Pijut, P.M., van Sambeek, J.W., Coggeshall, M.V., Seifert, J., Woeste, K., Overton, R., Ponder, F., Jr., Eds.; North Central Research Station, Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 2004; pp. 1–8.
[160]  Beineke, W.F. Twenty years of black walnut genetic improvement at Purdue University. North. J. Appl. For. 1989, 6, 68–71.
[161]  Victory, E.R.; Glaubitz, J.C.; Rhodes, O.E., Jr.; Woeste, K.E. Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am. J. Bot. 2006, 93, 118–126, doi:10.3732/ajb.93.1.118.
[162]  Reid, W.; Coggeshall, M.V.; Hunt, K.L. Cultivar Evaluation and Development for Black Walnut Orchards. In , Proceedings of the 6th Walnut Council Research Symposium, Lafayette, IN, USA, 25–28 July 2004; Michler, C.H., Pijut, P.M., van Sambeek, J.W., Coggeshall, M.V., Seifert, J., Woeste, K., Overton, R., Ponder, F., Jr., Eds.; North Central Research Station, Forest Service, U.S. Department of Agriculture: Washington, DC, USA; pp. 18–24.
[163]  Reid, W.; Coggeshall, M.; Garret, H.E.; van Sambeek, J. Growing Black Walnut for Nut Production. Available online: http://www.centerforagroforestry.org/pubs/walnutNuts.pdf (accessed on 27 March 2013).
[164]  Coggeshall, M.V. Black walnut cultivar improvement program at the University of Missouri. Annu. Rep. North. Nut. Grow. Assoc. 2002, 93, 93–96.
[165]  Woeste, K.E.; McKenna, J.R. Walnut Genetic Improvement at the Start of a New Century. In , Proceedings of the 6th Walnut Council Research Symposium, Lafayette, IN, USA, 25–28 July 2004; Michler, C.H., Pijut, P.M., van Sambeek, J.W., Coggeshall, M.V., Seifert, J., Woeste, K., Overton, R., Ponder, F., Jr., Eds.; U.S. Department of Agriculture: Washington, DC, USA, 2004; pp. 9–17.
[166]  The Northern Nut Growers Association Home Page. Available online: http://www.nutgrowing.org (accessed on 27 March 2013).
[167]  Hanson, B. Black walnut cultivar performance. Annu. Rep. North. Nut. Grow. Assoc. 2003, 94, 120–132.
[168]  Gordon, J.H. Nut Growing Ontario Style; Society of Ontario Nut Growers: Niagara-on-the-Lake, Ontario, Canada, 1993.
[169]  Utley, C.; Nguyen, T.; Roubtsova, T.; Coggeshall, M.; Ford, T.M.; Grauke, L.J.; Graves, A.D.; Leslie, C.A.; McKenna, J.; Woeste, K.; et al. Susceptibility of walnut and hickory species to Geosmithia morbida. Plant Dis. 2013, 97, 601–607, doi:10.1094/PDIS-07-12-0636-RE.
[170]  Brison, F.R. Pecan Culture; Capital Printing: Austin, TX, USA, 1974.
[171]  Grauke, L.J. Yunnan hickory. Annu. Rep. North. Nut. Grow. Assoc. 2006, 97, 57–69.
[172]  MacDaniels, L.H. Hickories. In Nut Tree Culture in North America; Jaynes, R.A., Ed.; Northern Nut Growers Association: Hamden, CT, USA, 1979; pp. 35–50.
[173]  Potts, B.M.; Dungey, H.S. Interspecific hybridization of Eucalyptus: Key issues for breeders and geneticists. New For. 2004, 27, 115–138, doi:10.1023/A:1025021324564.
[174]  Thompson, T.E.; Grauke, L.J. Pecans and other hickories (Carya). In Genetic Resources of Temperate Fruit and Nut Crops; Moore, J.N., Ballington, J.R., Eds.; International Society for Horticultural Science: Wageningen, The Netherlands, 1991; pp. 837–904.
[175]  Mehlenbacher, S.A. Hazelnuts (Corylus). In Genetic Resources of Temperate Fruit and Nut Crops; Moore, J.N., Ballington, J.R., Eds.; International Society for Horticultural Science: Leuven, Belgium, 1991; pp. 789–836.
[176]  Erdogan, V.; Mehlenbacher, S.A. Interspecific hybridization in hazelnut (Corylus). J. Am. Soc. Hortic. Sci. 2000, 125, 489–497.
[177]  Molnar, T.J.; Goffreda, J.C.; Funk, C.R. Developing hazelnuts for the eastern United States. Acta Hortic. 2005, 68, 609–617.
[178]  United States Department of Agriculture Web Page. National Clonal Germplasm Repository Database. Available online: http://www.ars.usda.gov/Main/docs.htm?docid=11035 (accessed on 27 March 2013).
[179]  Fuller, A.S. The Nut Culturist; Orange Judd Company: New York, NY, USA, 1896.
[180]  Mehlenbacher, S.A.; Thompson, M.M.; Cameron, H.R. Occurrence and inheritance of resistance to eastern filbert blight in “Gasaway” hazelnut. HortScience 1991, 26, 410–411.
[181]  Lunde, C.F.; Mehlenbacher, S.A.; Smith, D.C. Survey of hazelnut cultivars for response to eastern filbert blight inoculation. HortScience 2000, 35, 729–731.
[182]  Chen, H.; Mehlenbacher, S.A.; Smith, D.C. Hazelnut accessions provide new sources of resistance to eastern filbert blight. HortScience 2007, 42, 466–469.
[183]  Molnar, T.J.; Zaurov, D.E.; Goffreda, J.C.; Mehlenbacher, S.A. Survey of hazelnut germplasm from Russia and Crimea for response to eastern filbert blight. HortScience 2007, 42, 51–56.
[184]  Molnar, T.J.; Goffreda, J.C.; Funk, C.R. Survey of Corylus resistance to Anisogramma anomala from different geographic locations. HortScience 2010, 45, 832–836.
[185]  Mehlenbacher, S.A.; Smith, D.C.; McCluskey, R.L. “Yamhill” hazelnut. HortScience 2009, 44, 845–847.
[186]  Mehlenbacher, S.A.; Smith, D.C.; McCluskey, R.L. “Jefferson” hazelnut. HortScience 2011, 46, 662–664.
[187]  Mehlenbacher, S.A. Hazelnuts. In A Guide to Nut Tree Culture in North America; Fulbright, D.W., Ed.; Northern Nut Growers Association: Hamden, CT, USA, 2003; Volume 1, pp. 183–215.
[188]  Ebrahem, K.S.; Richardson, D.G.; Tetley, R.M.; Mehlenbacher, S.A. Oil content, fatty acid composition, and vitamin E concentration of 17 hazelnut varieties, compared to other types of nuts and oil seeds. Acta Hortic. 1994, 351, 685–692.
[189]  Leakey, R.R.B. Potential for novel food products from agroforestry trees: A review. Food Chem. 1999, 66, 1–14, doi:10.1016/S0308-8146(98)00072-7.
[190]  Breeding Plantation Tree Crops: Tropical Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2009.
[191]  Batugal, P.; Bourdeix, R.; Baudouin, L. Coconut breeding. In Breeding Plantation Tree Crops: Temperate Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2009; pp. 327–375.
[192]  Sambanthamurthi, R.; Singh, R.; Kadir, A.P.G.; Abdullah, M.O.; Kushairi, A. Opportunities for the oil palm via breeding and biotechnology. In Breeding Plantation Tree Crops: Tropical Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2009; pp. 377–421.
[193]  Leakey, R.R.B.; Newton, A.C. Domestication of “Cinderella” species as the start of a woody-plant revolution. Tropical Trees: The Potential for Domestication and the Rebuilding of Forest Resources; Leakey, R.R., Newton, A.C., Eds.; HMSO: London, UK, 1994; pp. 3–6.
[194]  Brewbaker, J.L.; Sorenssen, C.T. Domestication of lesser-known species of the genus Leucaena. Tropical Trees: The Potential for Domestication and the Rebuilding of Forest Resources; Leakey, R.R., Newton, A.C., Eds.; HMSO: London, UK, 1994; pp. 195–204.
[195]  Pandey, V.C.; Kumar, A. Leucaena leucocephala: An underutilized plant for pulp and paper production. Genet. Resour. Crop Evol. 2013, 60, 1165–1171, doi:10.1007/s10722-012-9945-0.
[196]  Nirsatmanto, A.; Leksono, B.; Kurinobu, S.; Shiraishi, A. Realized genetic gain observed in second generation seedling seed orchards of Acacia mangium in South Kalimantan, Indonesia. J. For. Res. 2004, 9, 265–269.
[197]  Brockwell, J.; Searle, S.D.; Jeavons, A.C.; Waayers, M. Nitrogen Fixation in Acacias: An Untapped Resource for Sustainable Plantations, Farm Forestry and Land Reclamation; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2005; pp. 1–132.
[198]  Eldridge, K.; Davidson, J.; Hardwood, C.; van Wyk, G. Eucalypt Domestication and Breeding; Oxford University Press: Oxford, UK, 1994.
[199]  Camphinos, E. Sustainable plantations of high-yield shape Eucalyptus trees for production of fiber: The Aracruz case. New For. 1999, 7, 129–143.
[200]  Calder, I.R.; Risier, P.T.W.; Prasanna, K.T.; Parameswarappa, S. Eucalyptus water use greater than rainfall input—A possible explanation from southern India. Hydrol. Earth Syst. Sci. 1997, 1, 249–256, doi:10.5194/hess-1-249-1997.
[201]  Geary, T.F. Afforestation in Uruguay: Study of a changing landscape. J. For. 2001, 99, 35–39.
[202]  Jawjit, W.; Kroeze, C.; Soontaranun, W.; Hordijk, L. Options to reduce the environmental impact by eucalyptus-based Kraft pulp industry in Thailand: Model description. J. Clean. Prod. 2007, 15, 1827–1839, doi:10.1016/j.jclepro.2006.10.003.
[203]  Jawjit, W.; Kroeze, C.; Soontaranun, W.; Hordijk, L. An analysis of the environmental pressure exerted by the eucalyptus-based Kraft pulp industry in Thailand. Environ. Dev. Sustain. 2006, 8, 289–311, doi:10.1007/s10668-005-9019-y.
[204]  Liu, H.; Li, J. The study of ecological oproblems of Eucalyptus plantation and sustainable development in Maoming Xiaoliang. J. Sustain. Dev. 2010, 3, 197–201.
[205]  Binkley, D.; Stape, J.L. Sustainable Management of Eucalyptus Plantations in a Changing World. Aveiro, Portugal, 11–15 October 2004. Borralho, N.M.G., Pereira, J.S., Marques, C., Coutinho, J., Madeira, M., Tomé, M., Eds.;
[206]  Bragan?a, M.; DeSouza, O.; Zanuncio, J.C. Environmental heterogeneity as a strategy for pest management in Eucalyptus plantations. For. Ecol. Manag. 1998, 102, 9–12, doi:10.1016/S0378-1127(97)00115-1.
[207]  Moffat, A.S. Resurgent forests can be greenhouse gas sponges. Science 1997, 277, 315–316, doi:10.1126/science.277.5324.315.
[208]  Fearnside, P.M. Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim. Chang. 2000, 46, 115–158, doi:10.1023/A:1005569915357.
[209]  The Global Partnership on Forest and Landscape Restoration Web Page. Available online: http://www.ideastransformlandscapes.org/ (accessed on 26 September 2013).
[210]  Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663, doi:10.1016/j.foreco.2010.09.027.
[211]  Calle, Z.; Murgueitio, E.; Chará, J. Integrating forestry, sustainable cattle ranching and landscape restoration. Unasylva 239 2012, 63, 31–40.
[212]  Kahn, P.C.; Molnar, T.; Zhang, G.G.; Funk, C.R. Investing in perennial crops to sustainably feed the world. Issues Sci. Technol. 2011, 27, 75–81.
[213]  Forest Stewardship Council Home Page. Available online: http://www.fsc.org/en (accessed on 27 March 2013).
[214]  Roundtable on Sustainable Palm Oil (RSPO) Home Page. Roundtable on Sustainable Palm Oil Production. Available online: http://www.rspo.org/ (accessed on 27 March 2013).
[215]  World Bank Web Page. World Development Report 2008: Agriculture for Development. Available online: http://siteresources.worldbank.org/INTWDR2008/Resources/2795087-1192111580172/WDROver2008-ENG.pdf (accessed on 27 March 2013).
[216]  Deane, C.; Ejeta, G.; Rabbinge, R.; Sayer, J. Science for development: Mobilizing global partnerships. Crop Sci. 2010, 50, v–viii, doi:10.2135/cropsci2010.12.0001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133