全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Multi-Layered Control Approach for Self-Adaptation in Automotive Embedded Systems

DOI: 10.1155/2012/971430

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an approach for self-adaptation in automotive embedded systems using a hierarchical, multi-layered control approach. We model automotive systems as a set of constraints and define a hierarchy of control loops based on different criteria. Adaptations are performed at first locally on a lower layer of the architecture. If this fails due to the restricted scope of the control cycle, the next higher layer is in charge of finding a suitable adaptation. We compare different options regarding responsibility split in multi-layered control in a self-healing scenario with a setup adopted from automotive in-vehicle networks. We show that a multi-layer control approach has clear performance benefits over a central control, even though all layers work on the same set of constraints. Furthermore, we show that a responsibility split with respect to network topology is preferable over a functional split. 1. Introduction There has been considerable work on self-adaptive systems which can reconfigure their software configuration at runtime [1–3]. However, applying these techniques to networked, embedded systems poses several new problems due to limitations and reliability requirements of embedded systems [4]. In particular, we focus on automotive embedded systems, where the main constraints are (i) limited memory resources,(ii)heterogeneous hardware platforms,(iii)different subnetworks connected by a gateway, (iv)various requirements of different functionalities, and(v)high demand on safety and reliability. The focus of this paper is on self-adaptation in automotive embedded systems using a hierarchical, multi-layered control approach implemented by concrete instances of a control architecture. Today’s automobiles consist of an increasing number of interconnected electronic devices—so-called electronic control units (ECUs)—which realize most functionalities of the car by software. This networked embedded system keeps the vehicle running by controlling the engine and the breaks, provides active safety features (e.g., antilock breaking system), makes driving more convenient, and entertains the passengers with a large number of information and comfort services (e.g., air conditioning, audio player). Especially modern driver assistance systems, which distribute their functionality over several components, increase the complexity of today’s vehicular embedded systems enormously. Managing nowadays vehicle software systems means managing over 2,000 software components, running on up to 100 ECUs [5]. Enhancing automotive embedded systems with self-adaptation provides

References

[1]  J. Kramer and J. Magee, “Dynamic configuration for distributed systems,” IEEE Transactions on Software Engineering, vol. 11, no. 4, pp. 424–436, 1985.
[2]  P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based runtime software evolution,” in Proceedings of the International Conference on Software Engineering, pp. 177–186, April 1998.
[3]  I. Georgiadis, J. Magee, and J. Kramer, “Self-Organising Software Architectures for Distributed Systems,” in Proceedings of the 1st Workshop on Self-Healing Systems (WOSS '02), pp. 33–38, November 2002.
[4]  M. Zeller, G. Weiss, D. Eilers, and R. Knorr, “An approach for providing dependable self-adaptation in distributed embedded systems,” in Proceedings of the 26th Annual ACM Symposium on Applied Computing (SAC '11), pp. 236–237, March 2011.
[5]  K. V. Prasad, M. Broy, and I. Krüger, “Scanning advances in aerospace automobile software technology,” Proceedings of the IEEE, vol. 98, no. 4, pp. 510–514, 2010.
[6]  G. Weiss, M. Zeller, D. Eilers, and R. Knorr, “Towards self-organization in automotive embedded systems,” in Proceedings of the 6th International Conference on Autonomic and Trusted Computing, pp. 32–46, 2009.
[7]  J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.
[8]  G. Weiss, M. Zeller, and D. Eilers, “Towards automotive embedded systems with self-x properties,” in New Trends and Developments in Automotive System Engineering, InTech, 2011.
[9]  G. Mühl, M. Werner, M. A. Jaeger, K. Herrmann, and H. Parzyjegla, “On the definitions of self-managing and self-organizing systems,” in Proceedings of the KiVS Workshopon Selbstorganisierende, Adaptive, Kontextsensitive verteilte Systeme, 2007.
[10]  Y. Brun, G. Di Marzo Serugendo, C. Gacek et al., “Engineering self-adaptive systems through feedback loops,” Software Engineering for Self-Adaptive, pp. 48–70, 2009.
[11]  P. Horn, “Autonomic Computing: IBM’s Perspective on the State of Information Technology,” 2001.
[12]  B. H. Cheng, R. Lemos, H. Giese, et al., “Software engineering for self-adaptive systems: a research roadmap,” in Software Engineering for Self-Adaptive Systems, B. H. Cheng, R. Lemos, h. Giese, P. Inverardi, and J. Magee, Eds., pp. 1–26, Springer, Berlin, Heidelberg, 2009.
[13]  M. Zeller, C. Prehofer, G. Weiss, D. Eilers, and R. Knorr, “Towards self-adaptation in real-time, networked systems: efficient solving of system constraints for automotive embedded systems,” in Proceedings of the 5th IEEE Int. Conference on Self-Adaptive and Self-Organizing Systems, pp. 79–88, 2011.
[14]  M. Broy, G. Reichart, and L. Rothhardt, “Architekturen softwarebasierter Funktionen im Fahrzeug: von den Anforderungen zur Umsetzung,” Informatik- Spektrum, vol. 34, pp. 42–59, 2011.
[15]  ICE, “IEC/DIN EN 61508: Functional safety of Electrical/Electronic/Programmable Electronic (E/E/PE) safety related systems: overview,” International Electrotechnical Commission (IEC), 1998.
[16]  ISO, “ISO/WD 26262: Road Vehicles—Functional Safety,” International Organization for Standardization (ISO), 2005.
[17]  R. de Lemos, H. Giese, H. Müller, et al., “Software engineering for self-adpaptive systems: a second research roadmap,” in Software Engineering for Self-Adaptive Systems, vol. 10431 of Dagstuhl Seminar Proceedings, 2011.
[18]  D. Weyns, B. Schmerl, V. Grassi, et al., “On patterns for decentralized control in self-adaptive systems,” in Software Engineering for Self-Adaptive Systems 2, Springer, Berlin, Heidelberg, 2012.
[19]  B. Hardung, Optimisation of the allocation of functions in vehicle networks [Ph.D. thesis], Universit?t Erlangen-Nürnberg, 2006.
[20]  K. Klobedanz, G. B. Defo, W. Mueller, and T. Kerstan, “Distributed coordination of task migration for fault-tolerant FlexRay networks,” in Proceedings of the 5th International Symposium on Industrial Embedded Systems (SIES '10), pp. 79–87, July 2010.
[21]  E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.
[22]  M. Dinkel and U. Baumgarten, “Self-configuration of vehicle systems—algorithms and Simulation,” in Proceedings of the 4th International Workshop on Intelligent Transportation, pp. 85–91, 2007.
[23]  SAT4J, “A satisfiability library for Java,” Version 2.2, 2009, http://www.sat4j.org/.
[24]  J. Kramer and J. Magee, “Self-managed systems: an architectural challenge,” in Proceedings of the Future of Software Engineering, pp. 259–268, May 2007.
[25]  F. Kluge, S. Uhrig, J. Mische, and T. Ungerer, “A two-layered management architecture for building adaptive real-time systems,” in Proceedings of the 6th IFIP International Workshop on Software Technologies for Embedded and Ubiquitous Systems, pp. 126–137, 2008.
[26]  M. Litoiu, M. Woodside, and T. Zheng, “Hierarchical model-based autonomic control of software systems,” SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–7, 2005.
[27]  A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu, “Towards requirements-driven autonomic systems design,” in Proceedings of the Workshop on Design and Evolution of Autonomic Application Software, pp. 1–8, 2005.
[28]  M. Zeller, G. Weiss, D. Eilers, and R. Knorr, “A multi-layered control architecture for self-management in adaptive automotive systems,” in Proceedings of the International Conference on Adaptive and Intelligent Systems (ICAIS '09), pp. 63–68, September 2009.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133