全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Functional Importance of 1α,25(OH)2-Vitamin D3 and the Identification of Its Nongenomic and Genomic Signaling Pathways in the Testis

DOI: 10.1155/2014/808906

Full-Text   Cite this paper   Add to My Lib

Abstract:

The 1α,25(OH)2-vitamin D3 (1,25-D3) is known by its classic effects on Ca2+ metabolism and regulation of cellular proliferation and differentiation. The hormone 1,25-D3 acts in the testis through nongenomic and genomic events being implicated in the success of spermatogenesis in rats and in human being. The aim of this review was to highlight the effect and intracellular pathways of 1,25-D3 to modulate the spermatogenesis. The pivotal role of 1,25-D3 in male reproduction is reinforced by the presence of VDR and 1α-hydroxylase in reproductive tract. Also, the marked expression of VDR and the VD metabolizing enzymes in human testis, ejaculatory tract, and mature spermatozoa implicates the 1,25-D3 in spermatogenesis and maturation of human spermatozoa. Among genomic events, 1,25-D3 influences the expression of calcium binding protein and stimulates aromatase gene expression through a nongenomic activation of the membrane-bound VDR receptor involving the PKA pathway in the testis. Also, 1,25-D3 stimulates amino acid transport and exocytosis in testis by nongenomic events coupled to ionic currents triggered at plasma membrane. All together, the demonstration that 1,25-D3 regulates both Sertoli cell and sperm function may be useful for the study and development of new therapeutic strategies for the male reproductive disorders. 1. General Aspects The first scientific report associated with vitamin D deficiency and bone disease rickets was around 1645. However, the recognition of the rickets in patients with no sunshine exposition was only in the 20th century. In 1924, an additional key for vitamin D present in skin was the discovery that a precursor of vitamin D could be converted into vitamin D by exposure to sunlight or ultraviolet [1]. The hallmark era of vitamin D began in 1965–1970 since the chemical characterization of an active metabolite of vitamin D, 1α,25(OH)2-vitamin D3 (1,25-D3), and its nuclear receptor (VDR) was reported [1, 2]. It is known that vitamin D3 does not have any intrinsic biological activity [3]. After the knowledge that the precursor of vitamin D can be converted into vitamin D by exposure to ultraviolet light (UVB), it is now comprehensive that vitamin D is correctly named as vitamin only when sunlight exposure does not exist [4]. Nowadays, the biologically active form of vitamin D is known to be a steroid hormone and endocrine system of vitamin D is well accepted. The chemical characterization, the production of an active metabolite of 1,25-D3, and its nuclear receptor occurred between 1965–1970 [5]. The interesting thing about

References

[1]  A. W. Norman, Encyclopedia of Hormones: Vitamin D, Elsevier Science, New York, NY, USA, 2003.
[2]  R. Bouillon, W. H. Okamura, and A. W. Norman, “Structure-function relationships in the vitamin D endocrine system,” Endocrine Reviews, vol. 16, no. 2, pp. 200–256, 1995.
[3]  A. W. Norman, “From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health,” American Journal of Clinical Nutrition, vol. 88, no. 2, pp. 491S–499S, 2008.
[4]  H. Goldblatt and K. N. Soames, “A study of rats on a normal diet irradiated daily by the mercury vapor quartz lamp or kept in darkness,” Biochemical Journal, vol. 17, pp. 294–297, 1923.
[5]  A. W. Norman, “Minireview: vitamin D receptor: new assignments for an already busy receptor,” Endocrinology, vol. 147, no. 12, pp. 5542–5548, 2006.
[6]  A. W. Norman and P. A. Roberts, “Steroid competition assay for determination of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D,” Methods in Enzymology, vol. 67, pp. 473–478, 1980.
[7]  R. Bouillon, G. Carmeliet, L. Verlinden et al., “Vitamin D and human health: lessons from vitamin D receptor null mice,” Endocrine Reviews, vol. 29, no. 6, pp. 726–776, 2008.
[8]  M. F. Holick, N. C. Binkley, H. A. Bischoff-Ferrari, et al., “Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 7, pp. 1911–1930, 2011.
[9]  G. Ponchon, A. L. Kennan, and H. F. DeLuca, “‘Activation’ of vitamin D by the liver,” The Journal of Clinical Investigation, vol. 48, no. 11, pp. 2032–2037, 1969.
[10]  D. E. Prosser and G. Jones, “Enzymes involved in the activation and inactivation of vitamin D,” Trends in Biochemical Sciences, vol. 29, no. 12, pp. 664–673, 2004.
[11]  N. E. Cooke and J. G. Haddad, “Vitamin D binding protein (Gc-globulin),” Endocrine Reviews, vol. 10, no. 3, pp. 294–307, 1989.
[12]  J. E. Bishop, E. D. Collins, W. H. Okamura, and A. W. Norman, “Profile of ligand specificity of the vitamin D binding protein for 1α,25- dihydroxyvitamin D3 and its analogs,” Journal of Bone and Mineral Research, vol. 9, no. 8, pp. 1277–1288, 1994.
[13]  A. W. Norman, S. Ishizuka, and W. H. Okamura, “Ligands for the vitamin D endocrine system: different shapes function as agonists and antagonists for genomic and rapid response receptors or as a ligand for the plasma vitamin D binding protein,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 76, no. 1-5, pp. 49–59, 2001.
[14]  A. W. Norman, C. J. Olivera, F. R. M. B. Silva, and J. E. Bishop, “A specific binding protein/receptor for 1α,25-dihydroxyvitamin D3 is present in an intestinal caveolae membrane fraction,” Biochemical and Biophysical Research Communications, vol. 298, no. 3, pp. 414–419, 2002.
[15]  A. W. Norman and F. R. M. B. Silva, “Structure function studies: identification of vitamin D analogs for the ligand-binding domains of important proteins in the vitamin D-endocrine system,” Reviews in Endocrine and Metabolic Disorders, vol. 2, no. 2, pp. 229–238, 2001.
[16]  F. K. Habib, S. Q. Maddy, and K. J. Gelly, “Characterisation of receptors for 1,25-dihydroxyvitamin D3 in the human testis,” Journal of Steroid Biochemistry, vol. 35, no. 2, pp. 195–199, 1990.
[17]  J. A. Johnson, J. P. Grande, P. C. Roche, and R. Kumar, “Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues,” Histochemistry and Cell Biology, vol. 105, pp. 7–15, 1996.
[18]  K. Kinuta, H. Tanaka, T. Moriwake, K. Aya, S. Kato, and Y. Seino, “Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads,” Endocrinology, vol. 141, no. 4, pp. 1317–1324, 2000.
[19]  C. Foresta, G. Strapazzon, L. de Toni et al., “Bone mineral density and testicular failure: evidence for a role of vitamin D 25-hydroxylase in human testis,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 4, pp. E646–E652, 2011.
[20]  C. Foresta, R. Selice, A. di Mambro, and G. Strapazzon, “Testiculopathy and vitamin D insufficiency,” The Lancet, vol. 376, pp. 1301–1301, 2010.
[21]  M. R. Haussler and A. W. Norman, “Chromosomal receptor for a vitamin D metabolite,” Proceedings of the National Academy of Sciences of the United States of America, vol. 62, no. 1, pp. 155–162, 1969.
[22]  M. T. Mizwicki and A. W. Norman, “The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling,” Science Signaling, vol. 2, no. 75, article re4, pp. 1–14, 2009.
[23]  G. K. Whitfield, P. W. Jurutka, C. A. Haussler, et al., “Nuclear vitamin D receptor: structure-function, molecular control of gene transcription, and novel bioactions,” in Vitamin D, D. Feldman, J. W. Pike, and F. H. Glorieux, Eds., pp. 219–261, Elsevier Academic Press, Oxford, UK, 2nd edition, 2005.
[24]  M. R. Haussler, P. W. Jurutka, M. Mizwicki, and A. W. Norman, “Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2 vitamin D3: genomic and non-genomic mechanisms,” Best Practice & Research: Clinical Endocrinology & Metabolism, vol. 25, no. 4, pp. 543–559, 2011.
[25]  J. Merke, W. Kreusser, B. Bier, and E. Ritz, “Demonstration and characterisation of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat,” European Journal of Biochemistry, vol. 130, no. 2, pp. 303–308, 1983.
[26]  M. R. Walters, “1,25-dihydroxyvitamin D3 receptors in the seminiferous tubules of the rat testis increase at puberty,” Endocrinology, vol. 114, no. 6, pp. 2167–2174, 1984.
[27]  J. Merke, U. Hugel, and E. Ritz, “Nuclear testicular 1,25-dihydroxyvitamin D3 receptors in Sertoli cells and seminiferous tubules of adult rodents,” Biochemical and Biophysical Research Communications, vol. 127, no. 1, pp. 303–309, 1985.
[28]  G. Schleicher, T. H. Privette, and W. E. Stumpf, “Distribution of soltriol [1,25(OH)2-vitamin D3] binding sites in male sex organs of the mouse: an autoradiographic study,” Journal of Histochemistry and Cytochemistry, vol. 37, no. 7, pp. 1083–1086, 1989.
[29]  A. R. Mahmoudi, A. H. Zarnani, and M. Jeddi-Tehrani, “Distribution of vitamin D receptor and 1α-hydroxylase in male mouse reproductive tract,” Reproductive Sciences, vol. 20, no. 4, pp. 426–436, 2013.
[30]  A. K. Nangia, J. L. Butcher, B. R. Konety, B. N. Vietmeier, and R. H. Getzenberg, “Association of vitamin D receptors with the nuclear matrix of human and rat genitourinary tissues,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 66, no. 4, pp. 241–246, 1998.
[31]  S. T. Corbett, O. Hill, and A. K. Nangia, “Vitamin D receptor found in human sperm,” Urology, vol. 68, no. 6, pp. 1345–1349, 2006.
[32]  S. Aquila, C. Guido, I. Perrotta, S. Tripepi, A. Nastro, and S. Andò, “Human sperm anatomy: ultrastructural localization of 1α,25-dihydroxyvitamin D3 receptor and its possible role in the human male gamete,” Journal of Anatomy, vol. 213, no. 5, pp. 555–564, 2008.
[33]  S. Aquila, C. Guido, E. Middea et al., “Human male gamete endocrinology: 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism,” Reproductive Biology and Endocrinology, vol. 7, article 140, pp. 1–13, 2009.
[34]  M. Blomberg Jensen, J. E. Nielsen, A. J?rgensen et al., “Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract,” Human Reproduction, vol. 25, no. 5, pp. 1303–1311, 2010.
[35]  M. Blomberg-Jensen, A. J?rgensen, J. E. Nielsen, et al., “Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality,” International Journal of Andrology, vol. 35, no. 4, pp. 499–510, 2012.
[36]  A. W. Norman, Vitamin D: The Calcium Homeostatic Steroid Hormone, Academic Press, New York, NY, USA, 1979.
[37]  W. H. Okamura, M. M. Midland, M. W. Hammond et al., “Chemistry and conformation of vitamin D molecules,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 53, no. 1–6, pp. 603–613, 1995.
[38]  E. J. Friedlander, H. L. Henry, and A. W. Norman, “Studies on the mode of action of calciferol. Effects of dietary calcium and phosphorus on the relationship between the 25-hydroxyvitamin D3-1α-hydroxylase and production of chick intestinal calcium binding protein,” The Journal of Biological Chemistry, vol. 252, no. 23, pp. 8677–8683, 1977.
[39]  M. R. Walters, D. L. Cuneo, and A. P. Jamison, “Possible significance of new target tissues for 1,25-dihydroxyvitamin D3,” Journal of Steroid Biochemistry, vol. 19, no. 1, pp. 913–920, 1983.
[40]  M. R. Walters, B. C. Osmundsen, R. M. Carter, P. C. Riggle, and J. R. Jeter, “Accumulating evidence for a physiological role for 1,25-dihydroxyvitamin D3 in new tragets: testis and heart,” in Vitamin D: Chemical, Biochemical, and Clinical Update, A. W. Norman, K. Schaefer, H. G. Grigoleit, and D. V. Herrath, Eds., pp. 137–142, de Gruyter, New York, NY, USA, 1985.
[41]  V. L. Akerstrom and M. R. Walters, “Physiological effects of 1,25-dihydroxyvitamin D3 in TM4 sertoli cell line,” American Journal of Physiology—Endocrinology and Metabolism, vol. 262, no. 6, pp. E884–E890, 1992.
[42]  N. Inpanbutr, J. D. Reiswig, W. L. Bacon, R. D. Slemons, and A. M. Iacopino, “Effect of vitamin D on testicular CaBP28K expression and serum testosterone in chickens,” Biology of Reproduction, vol. 54, pp. 242–248, 1996.
[43]  S. E. Bulun, I. M. Rosenthal, A. M. Brodie, et al., “Use of tissue-specific promoters in the regulation of aromatase cytochrome P450 gene expression in human testicular and ovarian sex cord tumors, as well as in normal fetal and adult gonads,” Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 6, pp. 1616–1621, 1993.
[44]  A. V. Krishnan, S. Swami, L. Peng, J. Wang, J. Moreno, and D. Feldman, “Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy,” Endocrinology, vol. 151, no. 1, pp. 32–42, 2010.
[45]  J. Lundqvist, M. Norlin, and K. Wikvall, “1α,25-dihydroxyvitamin D3 exerts tissue-specific effects on estrogen and androgen metabolism,” Biochimica et Biophysica Acta, vol. 1811, no. 4, pp. 263–270, 2011.
[46]  E. Wehr, S. Pilz, B. O. Boehm, W. M?rz, and B. Obermayer-Pietsch, “Association of vitamin D status with serum androgen levels in men,” Clinical Endocrinology, vol. 73, no. 2, pp. 243–248, 2010.
[47]  S. Pilz, S. Frisch, H. Koertke et al., “Effect of vitamin D supplementation on testosterone levels in men,” Hormone and Metabolic Research, vol. 43, no. 3, pp. 223–225, 2011.
[48]  S. Carreau, “Leydig cell aromatase: from gene to physiological role,” in The Leydig Cell in Health and Disease, A. H. Payne and M. P. Hardy, Eds., pp. 189–195, Human Press, Totowa, NJ, USA, 2007.
[49]  S. Carreau, H. Boura?ma-Lelong, C. Bois, L. Zanatta, F. R. M. B. Silva, and C. Delalande, “Aromatase, estrogens and testicular germ cell development,” Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, vol. 11, no. 1, pp. 33–39, 2011.
[50]  S. Carreau and R. A. Hess, “Oestrogens and spermatogenesis,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1546, pp. 1517–1535, 2010.
[51]  S. Carreau, C. Bois, L. Zanatta, F. R. M. B. Silva, H. Bouraima-Lelong, and C. Delalande, “Estrogen signaling in testicular cells,” Life Sciences, vol. 89, no. 15-16, pp. 584–587, 2011.
[52]  K. Golovine, M. Schwerin, and J. Vanselow, “Three different promoters control expression of the aromatase cytochrome P450 gene (Cyp19) in mouse gonads and brain,” Biology of Reproduction, vol. 68, no. 3, pp. 978–984, 2003.
[53]  N. Yamada-Mouri, S. Hirata, and J. Kato, “Existence and expression of the untranslated first exon of aromatase mRNA in the rat brain,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 58, no. 2, pp. 163–166, 1996.
[54]  D. Silandre, C. Delalande, P. Durand, and S. Carreau, “Three promoters PII, PI.f, and PI.tr direct the expression of aromatase (cyp19) gene in male rat germ cells,” Journal of Molecular Endocrinology, vol. 39, no. 1-2, pp. 169–181, 2007.
[55]  M. Young and M. J. Mcphaul, “A steroidogenic factor-1-binding site and cyclic adenosine 3′,5′- monophosphate response element-like elements are required for the activity of the rat aromatase promoter in rat Leydig tumor cell lines,” Endocrinology, vol. 139, no. 12, pp. 5082–5093, 1998.
[56]  M. Lanzino, S. Catalano, C. Genissel et al., “Aromatase messenger RNA is derived from the proximal promoter of the aromatase gene in Leydig, Sertoli, and germ cells of the rat testis,” Biology of Reproduction, vol. 64, no. 5, pp. 1439–1443, 2001.
[57]  V. Pezzi, R. Sirianni, A. Chimento et al., “Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-1)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression,” Endocrinology, vol. 145, no. 5, pp. 2186–2196, 2004.
[58]  L. Zanatta, H. Boura?ma-Lelong, C. Delalande, F. R. M. B. Silva, and S. Carreau, “Regulation of aromatase expression by 1α,25(OH)2 vitamin D3 in rat testicular cells,” Reproduction, Fertility and Development, vol. 23, no. 5, pp. 725–735, 2011.
[59]  V. G. Pardo, R. Boland, and A. R. de Boland, “1α,25(OH)2-vitamin D3 stimulates intestinal cell p38 MAPK activity and increases c-Fos expression,” International Journal of Biochemistry & Cell Biology, vol. 38, no. 7, pp. 1181–1190, 2006.
[60]  I. Nemere, Y. Yoshimoto, and A. W. Norman, “Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3,” Endocrinology, vol. 115, no. 4, pp. 1476–1483, 1984.
[61]  J. C. Fleet, “Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean?” Journal of Nutrition, vol. 134, no. 12, pp. 3215–3218, 2004.
[62]  H. N. Christensen, A. J. Aspen, and E. G. Rice, “Metabolism in the rat of three amino acids lacking alpha-hydrogen,” The Journal of Biological Chemistry, vol. 220, no. 1, pp. 287–294, 1956.
[63]  G. G. Guidotti, A. F. Borghetti, and G. Gazzola, “The regulation of amino acid transport in animal cells,” Biochimica et Biophysica Acta, vol. 515, no. 4, pp. 329–366, 1978.
[64]  F. R. M. B. Silva and G. F. Wassermann, “Kinetics of FSH stimulation of methylaminoisobutyric acid uptake in Sertoli cells in culture from testes of 15 day-old rats,” Medical Science Research, vol. 27, no. 9, pp. 627–630, 1999.
[65]  D. Menegaz, A. Rosso, C. Royer, L. D. Leite, A. R. S. Santos, and F. R. M. B. Silva, “Role of 1α,25(OH)2 vitamin D3 on α-[1-14C]MeAIB accumulation in immature rat testis,” Steroids, vol. 74, no. 2, pp. 264–269, 2009.
[66]  A. da Cruz Curte and G. F. Wassermann, “Identification of amino acid transport systems stimulated by FSH in rat testes,” Journal of Endocrinology, vol. 106, no. 3, pp. 291–294, 1985.
[67]  F. R. M. B. Silva, L. Renck, and G. F. Wassermann, “Retinol stimulates amino acid transport to Sertoli cell by a mechanism unrelated to protein synthesis,” Medical Science Research, vol. 23, no. 3, pp. 155–156, 1995.
[68]  F. R. M. B. Silva, L. D. Leite, K. P. Barreto, C. D'Agostini, and A. Zamoner, “Effect of 3,5,3′-triiodo-L-thyronine on amino acid accumulation and membrane potential in Sertoli cells of the rat testis,” Life Sciences, vol. 69, no. 8, pp. 977–986, 2001.
[69]  F. R. M. B. Silva, L. D. Leite, and G. F. Wassermann, “Rapid signal transduction in Sertoli cells,” European Journal of Endocrinology, vol. 147, no. 3, pp. 425–433, 2002.
[70]  K. C. Volpato, D. Menegaz, L. D. Leite, K. P. Barreto, E. de Vilhena Garcia, and F. R. M. B. Silva, “Involvement of K+ channels and calcium-dependent pathways in the action of T3 on amino acid accumulation and membrane potential in Sertoli cells of immature rat testis,” Life Sciences, vol. 74, no. 10, pp. 1277–1288, 2004.
[71]  D. Menegaz, A. Zamoner, C. Royer, L. D. Leite, Z. A. Bortolotto, and F. R. M. B. Silva, “Rapid responses to thyroxine in the testis: active protein synthesis-independent pathway,” Molecular and Cellular Endocrinology, vol. 246, no. 1-2, pp. 128–134, 2006.
[72]  D. Menegaz, A. Barrientos-Duran, A. Kline et al., “1α,25(OH)2-vitamin D3 stimulation of secretion via chloride channel activation in Sertoli cells,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 119, no. 3–5, pp. 127–134, 2010.
[73]  A. P. Zanatta, L. Zanatta, R. Goncalves, A. Zamoner, and F. R. M. B. Silva, “Integrin participates in the effect of thyrone on plasma membrane in immature rat testis,” Biochimica et Biophysica Acta, vol. 1830, pp. 2629–2637, 2013.
[74]  P. Biswas and L. P. Zanello, “1α,25(OH)2 vitamin D3 induction of ATP secretion in osteoblasts,” Journal of Bone and Mineral Research, vol. 24, no. 8, pp. 1450–1460, 2009.
[75]  L. D. Russell and M. D. Griswold, The Sertoli Cell, Cache River Press, Clearwater, Fla, USA, 1993.
[76]  N. Lalevee, F. Pluciennik, and M. Joffre, “Voltage-dependent calcium current with properties of T-type current in Sertoli cells from immature rat testis in primary cultures,” Biology of Reproduction, vol. 56, pp. 680–687, 1997.
[77]  A. Jungwirth, T. Weiger, S. K. Singh, M. Paulmichl, and J. Frick, “Follicle-stimulating hormone activates a cAMP-dependent chloride conductance in TM4 Sertoli cells,” Biochemical and Biophysical Research Communications, vol. 233, pp. 203–206, 1997.
[78]  F. R. Boockfor, R. A. Morris, D. C. DeSimone, D. M. Hunt, and K. B. Walsh, “Sertoli cell expression of the cystic fibrosis transmembrane conductance regulator,” American Journal of Physiology—Cell Physiology, vol. 274, no. 4, pp. C922–C930, 1998.
[79]  N. Lalevée and M. Joffre, “Inhibition by cAMP of calcium-activated chloride currents in cultured Sertoli cells from immature testis,” Journal of Membrane Biology, vol. 169, no. 3, pp. 167–174, 1999.
[80]  C. Auzanneau, C. Norez, S. No?l, C. Jougla, F. Becq, and C. Vandebrouck, “Pharmacological profile of inhibition of the chloride channels activated by extracellular acid in cultured rat Sertoli cells,” Reproduction Nutrition Development, vol. 46, no. 3, pp. 241–255, 2006.
[81]  C. Auzanneau, C. Norez, F. Antigny et al., “Transient receptor potential vanilloid 1 (TRPV1) channels in cultured rat Sertoli cells regulate an acid sensing chloride channel,” Biochemical Pharmacology, vol. 75, no. 2, pp. 476–483, 2008.
[82]  A. P. Zanatta, L. Zanatta, R. Goncalves, A. Zamoner, and F. R. M. B. Silva, “Rapid responses to reverse T3 hormone in immature rat Sertoli cells: calcium uptake and exocytosis mediated by integrin,” PLoS ONE, vol. 8, no. 10, Article ID e77176, 2013.
[83]  D. Menegaz, C. Royer, A. Rosso, A. Z. P. D. Souza, A. R. S. D. Santos, and F. R. M. B. Silva, “Rapid stimulatory effect of thyroxine on plasma membrane transport systems: calcium uptake and neutral amino acid accumulation in immature rat testis,” International Journal of Biochemistry & Cell Biology, vol. 42, no. 6, pp. 1046–1051, 2010.
[84]  L. P. Zanello and A. W. Norman, “Stimulation by 1α,25(OH)2-vitamin D3 of whole cell chloride currents in osteoblastic ROS 17/2.8 cells. A structure-function study,” The Journal of Biological Chemistry, vol. 272, no. 36, pp. 22617–22622, 1997.
[85]  Z. Xiaoyu, B. Payal, O. Melissa, and L. P. Zanello, “1α,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 103, no. 3–5, pp. 457–461, 2007.
[86]  L. Zanatta, A. Zamoner, R. Gonalves et al., “Effect of 1α,25-dihydroxyvitamin D3 in plasma membrane targets in immature rat testis: ionic channels and gamma-glutamyl transpeptidase activity,” Archives of Biochemistry and Biophysics, vol. 515, no. 1-2, pp. 46–53, 2011.
[87]  C. Lu and A. Steinberger, “Gamma glutamyl transpeptidase activity in the developing rat testis. Enzyme localization in isolated cell types,” Biology of Reproduction, vol. 17, no. 1, pp. 84–88, 1977.
[88]  L. W. DeLap, S. S. Tate, and A. Meister, “γ-glutamyl transpeptidase of rat seminal vesicles; effect of orchidectomy and hormone administration on the transpeptidase in relation to its possible role in secretory activity,” Life Sciences, vol. 16, no. 5, pp. 691–704, 1975.
[89]  S. B. Meroni, D. F. Cánepa, E. H. Pellizzari, H. F. Schteingart, and S. B. Cigorraga, “Effects of purinergic agonists on aromatase and gammaglutamyl transpeptidase activities and on transferrin secretion in cultured Sertoli cells,” Journal of Endocrinology, vol. 157, no. 2, pp. 275–283, 1998.
[90]  G. G. Glenner, J. E. Folk, and P. J. McMillan, “Histochemical demonstration of a gamma-glutamyl transpeptidase-like activity,” Journal of Histochemistry and Cytochemistry, vol. 10, pp. 481–489, 1962.
[91]  L. Zanatta, A. Zamoner, R. Gon?alves et al., “1α,25-dihydroxyvitamin D3 signaling pathways on calcium uptake in 30-day-old rat sertoli cells,” Biochemistry, vol. 50, no. 47, pp. 10284–10292, 2011.
[92]  L. Zanatta, A. Zamoner, A. P. Zanatta et al., “Nongenomic and genomic effects of 1α,25(OH)2 vitamin D3 in rat testis,” Life Sciences, vol. 89, no. 15-16, pp. 515–523, 2011.
[93]  A. Rosso, M. Pansera, A. Zamoner et al., “1α,25(OH)2-vitamin D3 stimulates rapid plasma membrane calcium influx via MAPK activation in immature rat Sertoli cells,” Biochimie, vol. 94, no. 1, pp. 146–154, 2012.
[94]  M. Blomberg Jensen, P. J. Bjerrum, T. E. Jessen et al., “Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa,” Human Reproduction, vol. 26, no. 6, pp. 1307–1317, 2011.
[95]  J. Paranko, M. Kallajoki, L. J. Pelliniemi, V. P. Lehto, and I. Virtanen, “Transient coexpression of cytokeratin and vimentin in differentiating rat sertoli cells,” Developmental Biology, vol. 117, no. 1, pp. 35–44, 1986.
[96]  M. D. Show, M. D. Anway, J. S. Folmer, and B. R. Zirkin, “Reduced intratesticular testosterone concentration alters the polymerization state of the Sertoli cell intermediate filament cytoskeleton by degradation of vimentin,” Endocrinology, vol. 144, no. 12, pp. 5530–5536, 2003.
[97]  W. A. Spruill, A. L. Steiner, L. L. Tres, and A. L. Kierszenbaum, “Follicle-stimulating hormone-dependent phosphorylation of vimentin in cultures of rat Sertoli cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 4, pp. 993–997, 1983.
[98]  A. Zamoner, P. F. Corbelini, C. Funchal, D. Menegaz, F. R. M. B. Silva, and R. Pessoa-Pureur, “Involvement of calcium-dependent mechanisms in T3-induced phosphorylation of vimentin of immature rat testis,” Life Sciences, vol. 77, no. 26, pp. 3321–3335, 2005.
[99]  A. Zamoner, P. Pierozan, L. F. Vidal et al., “Vimentin phosphorylation as a target of cell signaling mechanisms induced by 1α,25-dihydroxyvitamin v in immature rat testes,” Steroids, vol. 73, no. 14, pp. 1400–1408, 2008.
[100]  A. W. Norman, W. H. Okamura, M. W. Hammond, et al., “Comparison of 6-s-cis and 6-s-trans locked analogs of 1α, 25(OH)2-vitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogs are preferred for genomic biological responses,” Molecular Endocrinology, vol. 11, no. 10, pp. 1518–1531, 1997.
[101]  L.-X. Zhou, I. Nemere, and A. W. Norman, “1,25-dihydroxyvitamin D3 analog structure-function assessment of the rapid stimulation of intestinal calcium absorption (transcaltachia),” Journal of Bone and Mineral Research, vol. 7, no. 4, pp. 457–463, 1992.
[102]  A. W. Norman, I. Nemere, K. R. Muralidharan, and W. H. Okamura, “1β,25(OH)2-vitamin D3 is an antagonist of 1α,25(OH)2-vitamin D3 stimulated transcaltachia (the rapid hormonal stimulation of intestinal calcium transport),” Biochemical and Biophysical Research Communications, vol. 189, no. 3, pp. 1450–1456, 1992.
[103]  A. W. Norman, R. Bouillon, M. C. Farach-Carson et al., “Demonstration that 1β,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereomers of 1α,25-dihydroxyvitamin D3,” The Journal of Biological Chemistry, vol. 268, no. 27, pp. 20022–20030, 1993.
[104]  C. M. Bula, J. E. Bishop, S. Ishizuka, and A. W. Norman, “25-dehydro-1α-hydroxyvitamin D3-26,23S-lactone antagonizes the nuclear vitamin D receptor by mediating a unique noncovalent conformational change,” Molecular Endocrinology, vol. 14, no. 11, pp. 1788–1796, 2000.
[105]  D. Menegaz, M. T. Mizwicki, A. Barrientos-Duran, N. Chen, H. L. Henry, and A. W. Norman, “Vitamin d receptor (VDR) regulation of voltage-gated chloride channels by ligands preferring a VDR-alternative pocket (VDR-AP),” Molecular Endocrinology, vol. 25, no. 8, pp. 1289–1300, 2011.
[106]  J. A. Huhtakangas, C. J. Olivera, J. E. Bishop, L. P. Zanello, and A. W. Norman, “The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2-vitamin D3 in vivo and in vitro,” Molecular Endocrinology, vol. 18, no. 11, pp. 2660–2671, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413