The present work uses fossils and subfossils to decipher the origin and evolution of terrestrial pathogens and endoparasites. Fossils, as interpreted by morphology or specific features of their hosts, furnish minimum dates for the origin of infectious agents, coevolution with hosts, and geographical locations. Subfossils, those that can be C14 dated (roughly under 50,000 years) and are identified by morphology as well as molecular and immunological techniques, provide time periods when humans became infected with various diseases. The pathogen groups surveyed include viruses, bacteria, protozoa, fungi, and select multicellular endoparasites including nematodes, trematodes, cestodes, and insect parasitoids in the terrestrial environment. 1. Introduction The world is filled with pathogens that have been around for millions of years, yet we know very little about their origins and evolution. The present work uses fossils and subfossils to decipher the origin and evolution of terrestrial pathogens and endoparasites. Fossils furnish minimum dates for the origin of infectious agents, coevolution with hosts, and geographical locations. Subfossil remains, those that can be C14 dated (roughly under 50,000 years), provide time periods when humans became infected with various diseases. The detection of fossil infectious agents is based on morphology or specific features of their hosts while molecular and immunological techniques can be used as well in searching for subfossil pathogens and parasites. Arthropods in amber that were vectoring vertebrate pathogens have provided unique information on the origin and evolution of human and animal diseases [1]. Such detailed preservation is due to the instant death of the vector, its rapid desiccation, and impregnation by natural fixatives. Dates for the various amber sites mentioned in the present work are Dominican, 20–15?mya based on foraminifera and 45–30?mya based on coccoliths; Mexican, 22–26?mya; Baltic, 40–50?mya; Myanmar (Burmese), 97–110?mya; and Lebanese, 130–135?mya. The pathogen groups surveyed include viruses, bacteria, protozoa, and fungi in the terrestrial environment. Also included are multicellular endoparasites such as nematodes, trematodes, cestodes, and select insect parasitoids. Examples are included when both the pathogen/parasite and host occur together as determined by morphological, molecular, or immunological evidence. Reports of disease in the fossil record based on host signs have been summarized previously [2–4]. 2. Pathogens 2.1. Viruses Viruses are probably quite ancient and may have existed
References
[1]
G. O. Poinar Jr., “The origin of insect-borne human diseases as revealed in amber,” The American Entomologist, vol. 57, no. 3, pp. 170–178, 2011.
[2]
A. J. Boucot, Evolutionary Paleobiology of Behavior and Coevolution, Elsevier, New York, NY, USA, 1990.
[3]
A. J. . Boucot and G. O. Poinar Jr., Fossil Behavior Compendium, CRC Press, Boca Raton, Fla, USA, 2010.
[4]
B. M. Rothschild and L. D. Martin, Paleopathology: Disease in the Fossil Record, CRC Press, Boca Raton, Fla, USA, 1993.
[5]
C. M. Fauquet and D. Fargette, “International committee on taxonomy of viruses and the 3,142 unassigned species,” Virology Journal, vol. 2, article 64, 2005.
[6]
G. O. Poinar Jr. and R. Poinar, “Fossil evidence of insect pathogens,” Journal of Invertebrate Pathology, vol. 89, no. 3, pp. 243–250, 2005.
[7]
R. T. Hess, G. S. Benham Jr., and G. O. Poinar Jr., “The ultrastructure of microorganisms in the tissues of Casinaria infesta (Cresson) (Hymenoptera: Ichneumonidae),” Journal of Invertebrate Pathology, vol. 26, no. 2, pp. 181–191, 1975.
[8]
G. O. Poinar Jr., R. Hess, and L. E. Caltagirone, “Virus-like particles in the calyx of Phanerotoma flavitestacea (Hymenoptera: Braconidae) and their transfer into host tissues,” Acta Zoologica, vol. 57, no. 3, pp. 161–165, 1976.
[9]
A. Katzourakis, “Paleovirology: inferring viral evolution from host genome sequence data,” Philosophical Transactions of the Royal Society B, vol. 368, no. 1626, Article ID 20120493, 2013.
[10]
E. A. Herniou, E. Huguet, J. Thézé, A. Bézier, G. Periquet, and J. M. Drezen, “When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses,” Philosophical Transactions of the Royal Society B, vol. 368, no. 1626, Article ID 20130051, 2013.
[11]
R. T. Hess and G. O. Poinar Jr., “Iridoviruses infecting terrestrial isopods and nematodes,” Current Topics in Microbiology and Immunology, vol. 116, pp. 49–76, 1985.
[12]
H. B. Whittington, The Burgess Shale, Yale University Press, New Haven, Conn, USA, 1985.
[13]
G. O. Poinar Jr., “Fossil flatus: indirect evidence of intestinal microbes,” in Fossil Behavior Compendium, A. J. Boucot and G. O. Poinar Jr., Eds., pp. 22–25, CRC Press, Boca Raton, Fla, USA, 2010.
[14]
S. M. Awramik, J. W. Schopf, and M. R. Walter, “Filamentous fossil bacteria from the Archean of Western Australia,” Precambrian Research, vol. 20, no. 2–4, pp. 357–374, 1983.
[15]
G. O. Poinar Jr., The Evolutionary History of Nematodes, Brill, Leiden, The Netherlands, 2011.
[16]
G. O. Poinar Jr., “Spirochete-like cells in a Dominican amber Ambylomma tick (Arachnida: Ixodidae),” in Historical Biology: An International Journal of Paleobiology, pp. 1–6, 2014.
[17]
D. E. Sonenshine, Biology of Ticks, vol. 2, Oxford University Press, Oxford, UK, 1993.
[18]
G. O. Poinar Jr. and R. Poinar, The Amber Forest, Princeton University Press, Princeton, NJ, USA, 1999.
[19]
A. Keller, A. Graefen, M. Ball, et al., “New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing,” Nature Communications, vol. 3, article 698, 2012.
[20]
G. O. Poinar Jr. and A. E. Brown, “A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae),” Systematic Parasitology, vol. 54, no. 3, pp. 199–205, 2003.
[21]
G. O. Poinar Jr. and R. Buckley, “Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from Lower Cretaceous Burmese amber,” Proceedings of the Entomological Society of Washington, vol. 110, no. 2, pp. 445–450, 2008.
[22]
G. O. Poinar Jr. and G. M. Thomas, Diagnostic Manual for the Identification of Insect Pathogens, Plenum Press, New York, NY, USA, 1978.
[23]
E. Weiss and J. W. Moulder, “Order rickettsiales gieszczkiewicz 1939,” in Bergey's Manual of Systematic Bacteriology, N. R. Krieg and J. G. Holt, Eds., pp. 687–729, Williams and Wilkins, Baltimore, Md, USA, 1984.
[24]
G. Blanc, “Comportement de Rickettsia barneti chez la tique, Hyalomma aegyptium (L.) sur la tortue terrestre, Testudo graeca,” Pathologie et Microbiologie, vol. 24, pp. 21–26, 1961.
[25]
G. O. Poinar Jr. and R. Poinar, What Bugged the Dinosaurs?Princeton University Press, Princeton, NJ, USA, 2008.
[26]
M. J. Lehane, Biology of Blood-Sucking Insects, Harper Collins, London, UK, 1991.
[27]
H. A. Lechevalier, “Nocardioforms,” in Bergey's Manual of Systematic Bacteriology, N. R. Krieg and J. G. Holt, Eds., pp. 1458–1506, Williams & Wilkins, Baltimore, Md, USA, 1984.
[28]
G. O. Poinar Jr., “Triatoma dominicana sp. n. (Hemiptera: Reduviidae: Triatominae), and Trypanosoma antiquus sp. n. (Stercoraria: Trypanosomatidae), the first fossil evidence of a triatomine-trypanosomatid vector association,” Vector-Borne and Zoonotic Diseases, vol. 5, no. 1, pp. 72–81, 2005.
[29]
G. O. Poinar Jr., “Paleorhodococcus dominicanus n. gen., n sp. (Actinobacteria) in a faecal droplet of Triatoma dominicana (Hemiptera: Reduviidae: Triatominae) in Dominican amber,” Historical Biology, vol. 24, no. 3, pp. 219–221, 2012.
[30]
G. O. Poinar Jr., “Fossil nematodes from Mexican amber,” Nematologica, vol. 23, no. 2, pp. 232–238, 1977.
[31]
R. P. Dollfus, Parasites des Helminthes, Paul Lechevalier, Paris, France, 1946.
[32]
G. O. Poinar Jr., “Notes on the origins and evolution of Bacillus in relation to insect parasitism,” in Fossil Behavior Compendium, A. J. Boucot and G. O. Poinar Jr., Eds., pp. 68–71, CRC Press, Boca Raton, Fla, USA, 2010.
[33]
G. M. Garrity, J. A. Bell, and T. G. Lilburn, “Taxonomic outline of the Prokaryotes,” in Bergey's Manual of Systematic Bacteriology, Springer, Heidelberg, Germany, 2nd edition, 2004.
[34]
N. G. Gratz, “Rodents and human disease: a global appreciation,” in Rodent Pest Management, I. Pakash, Ed., pp. 101–169, CRC Press, Boca Raton, Fla, USA, 1988.
[35]
L. A. Durden and R. Traub, “Fleas (Siphonaptera),” in Medical and VeterInary Entomology, D. Mullen and L. A. Durden, Eds., pp. 103–145, Academic Press, Amsterdam, The Netherland, 2002.
[36]
K. I. Bos, V. J. Schuenemann, G. B. Golding et al., “A draft genome of Yersinia pestis from victims of the Black Death,” Nature, vol. 478, no. 7370, pp. 506–510, 2011.
[37]
A. M. Devault, G. B. Golding, N. Waglechner et al., “Second pandemic strain of Vibrio cholerae from the Philadelphia cholera Outbreak of 1849,” The New England Journal of Medicine, vol. 370, pp. 334–340, 2014.
[38]
?. Fostowicz-Frelik and G. J. Frelik, “Earliest record of dental pathogen discovered in a North American eocene rabbit,” Palaios, vol. 25, no. 12, pp. 818–822, 2010.
[39]
G. O. Poinar Jr., “Palaeomyia burmitis (Diptera: Phlebotomidae), a new genus and species of Cretaceous sand flies with evidence of blood-sucking habits,” Proceedings of the Entomological Society of Washington, vol. 106, pp. 598–605, 2004.
[40]
G.O. Poinar Jr. and R. Poinar, “Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber,” Protist, vol. 155, no. 3, pp. 305–310, 2004.
[41]
G. O. Poinar Jr. and R. Poinar, “Evidence of vector-borne disease of early cretaceous reptiles,” Vector-Borne and Zoonotic Diseases, vol. 4, no. 4, pp. 281–284, 2004.
[42]
S. Kamhawi, “The journey of Leishmania parasites within the digestive tract of phlebotomine sand flies,” in Leishmania, J. P. Farrell, Ed., pp. 59–73, Kluwer Academic, Dordrecht, Germany, 2002.
[43]
J. R. Baker, “The evolution of parasitic protozoa,” in Evolution of Parasites, A. E. R. Taylor, Ed., pp. 1–27, Blackwell Scientific, Oxford, UK, 1965.
[44]
G. O. Poinar Jr., R. L. Jacobson, and C. L. Eisenberger, “Early cretaceous phlebotomine sand fly larvae (Diptera: Psychodidae),” Proceedings of the Entomological Society of Washington, vol. 108, no. 4, pp. 785–792, 2006.
[45]
G. O. Poinar Jr. and A. E. Brown, “A non-gilled hymenomycete in Cretaceous amber,” Mycological Research, vol. 107, no. 6, pp. 763–768, 2003.
[46]
G. O. Poinar Jr., “Early Cretaceous trypanosomatids associated with fossil sand fly larvae in Burmese amber,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 5, pp. 635–637, 2007.
[47]
A. G. B. Simpson, J. R. Stevens, and J. Luke?, “The evolution and diversity of kinetoplastid flagellates,” Trends in Parasitology, vol. 22, no. 4, pp. 168–174, 2006.
[48]
R. B. McGhee and W. B. Cosgrove, “Biology and physiology of the lower trypanosomatidae,” Microbiological Reviews, vol. 44, no. 1, pp. 140–173, 1980.
[49]
T. B. Clark, W. R. Kellen, J. E. Lindegren, and T. A. Smith, “The transmission of Crithidia fasiculata Leger 1902 in Culiseta incidens (Thomson),” Journal of protozoology, vol. 11, no. 3, pp. 400–402, 1964.
[50]
P. Volf, A. Kiewegová, and A. Nemec, “Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of female diet,” Folia Parasitologica, vol. 49, no. 1, pp. 73–77, 2002.
[51]
E. A. Steinhaus, Principles of Insect Pathology, McGraw-Hill, New York, NY, USA, 1949.
[52]
D. Azar, A. Nel, M. Solignac, J.-C. Paicheler, and F. Bouchet, “New genera and species of psychodoid flies from the Lower Cretaceous amber of Lebanon,” Palaeontology, vol. 42, no. 6, pp. 1101–1136, 1999.
[53]
J. A. Downs, “The ecology of blood-sucking Diptera: an evolutionary perspective,” in Ecology and Physiology of Parasites, A. M. Fallis, Ed., pp. 232–258, University of Toronto Press, Toronto, Canada, 1970.
[54]
J. D. Filho and R. P. Brazil, “Relationships of new world Phlebotomine sand flies (Diptera: Psychodidae) based on fossil evidence,” Memórias do Instituto Oswaldo Cruz, vol. 98, 1, pp. 145–149, 2003.
[55]
R. Lainson and J. J. Shaw, “Evolution, classification and geographical distribution,” in The Leishmaniases in Biology and Medicine, W. Peters and R. Killick-Kendrick, Eds., vol. 1, pp. 1–112, Academic Press, London, UK, 1987.
[56]
S. F. Kerr, “Palaearctic Origin of Leishmania,” Memórias do Instituto Oswaldo Cruz, vol. 95, no. 1-2, pp. 75–80, 2000.
[57]
T. C. Orlando, M. A. T. Rubio, N. R. Sturm, D. A. Campbell, and L. M. Floeter-Winter, “Intergenic and external transcribed spacers of ribosomal RNA genes in lizard-infecting Leishmania: molecular structure and phylogenetic relationship to mammal-infecting Leishmania in the subgenus Leishmania (Leishmania),” Memórias do Instituto Oswaldo Cruz, vol. 97, no. 5, pp. 695–701, 2002.
[58]
S. R. Telford Jr., “The kinetoplastid hemoflagellates of reptiles,” in Parasitic Protozoa, J. P. Kreier, Ed., vol. 10, pp. 161–223, Academic Press, San Diego, Calif, USA, 2nd edition, 1995.
[59]
V. C. L. C. Wilson and B. A. Southgate, “Lizard Leishmania,” in Biology of the Kinetoplastida, W. H. R. Lumsden and D. A. Evans, Eds., vol. 2, pp. 241–268, Academic Press, London, UK, 1979.
[60]
P. P. Perfilev, “Phlebotomidae (Sandflies),” in Diptera of the U.S.S.R., A. A. Strelkov, Ed., vol. 3, 2, pp. 1–363, Nauka, Moscow, Russia, 1966.
[61]
D. J. Lewis, “Phlebotomidae and psychodidae (Sand-flies and Moth-flies),” in Insects and Other Arthropods of Medical Importance, K. G. V. Smith, Ed., pp. 155–179, The Trustees of the British Museum (Natural History), London, UK, 1973.
[62]
S. F. Kerr, “Molecular trees of trypanosomes incongruent with fossil records of hosts,” Memórias do Instituto Oswaldo Cruz, vol. 101, no. 1, pp. 25–30, 2006.
[63]
H. A. Noyes, D. A. Morrison, M. L. Chance, and J. T. Ellis, “Evidence for a neotropical origin of Leishmania,” Memórias do Instituto Oswaldo Cruz, vol. 95, no. 4, pp. 575–578, 2000.
[64]
G. O. Poinar Jr., “Lutzomyia adiketis sp. n. (Diptera: Phlebotomidae), a vector of Paleoleishmania neotropicum sp. n. (Kinetoplastida: Trypanosomatidae) in Dominican amber,” Parasites & Vectors, vol. 1, article 22, 2008.
[65]
L. L. Walters, G. B. Modi, R. B. Tesh, and T. Burrage, “Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abonnenci (Diptera: Psychodidae),” The American Journal of Tropical Medicine and Hygiene, vol. 36, no. 2, pp. 294–314, 1987.
[66]
L. L. Walters, G. L. Chaplin, G. B. Modi, and R. B. Tesh, “Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania Braziliensis panamensis) in Lutzomyia gomezi (Diptera: psychodidae): a natural host-parasite association,” The American Journal of Tropical Medicine and Hygiene, vol. 40, no. 1, pp. 19–39, 1989.
[67]
L. L. Walters, G. B. Modi, G. L. Chaplin, and R. B. Tesh, “Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera: Psychodidae),” The American Journal of Tropical Medicine and Hygiene, vol. 41, no. 3, pp. 295–317, 1989.
[68]
G. O. Poinar Jr., “Leptoconops nosopheris sp. n. (Diptera: Ceratopogonidae) and Paleotrypanosoma burmanicus gen. n., sp. n. (Kinetoplastida: Trypanosomatidae), a biting midge—trypanosome vector association from the Early Cretaceous,” Memórias do Instituto Oswaldo Cruz, vol. 103, no. 5, pp. 468–471, 2008.
[69]
G. Auezova, Z. Brushko, and R. Kubykin, “Feeding of biting midges (Leptoconopidae) on reptiles,” in Proceeding of the 2nd International Congress of Dipterology, p. 12, Bratislava, Czechoslovakia, September 1990.
[70]
B. A. Mullens, C. Barrows, and A. Borkent, “Lizard feeding by Leptoconops (Brachyconops) californiensis (Diptera: Ceratopogonidae) on desert sand dunes,” Journal of Medical Entomology, vol. 34, no. 6, pp. 735–737, 1997.
[71]
A. P. Fernandes, K. Nelson, and S. M. Beverley, “Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 24, pp. 11608–11612, 1993.
[72]
G. O. Poinar Jr. and R. Milki, Lebanese Amber, Oregon State University Press, Corvallis, Ore, USA, 2001.
[73]
C. Hoare, The Trypanosomes of Mammals, Blackwell Scientific Publications, Oxford, UK, 1972.
[74]
H. Lent and P. Wygodzinsky, “Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of chagas’ disease,” Bulletin of the American Museum of Natural History, vol. 163, pp. 123–520, 1979.
[75]
R. E. Ryckman, “The vertebrate hosts of the Triatominae of North and Central America and the West Indies (Hemiptera: Reduviidae: Triatominae),” Bulletin of the Society of Vector Ecology, vol. 11, pp. 221–241, 1986.
[76]
F. Guhl, C. Jaramillo, R. Yockteng, G. A. Vallejo, and F. Cárdenas-Arroyo, “Trypanosoma cruzi DNA in human mummies,” The Lancet, vol. 349, no. 9062, p. 1370, 1997.
[77]
G. O. Poinar Jr., “Panstrongylus hispaniolae sp. n. (Hemiptera: Reduviidae: Triatominae), a new fossil triatome in Dominican amber with evidence of gut flagellates,” Palaeodiversity, vol. 6, pp. 1–8, 2013.
[78]
J. A. Cerisola, C. E. del Prado, R. Rohwedder, and J. P. Bozzini, “Blastocrithidia triatomae n. sp. found in Triatoma infestans from Argentina,” Journal of Protozoology, vol. 18, no. 3, pp. 503–506, 1971.
[79]
G. A. Schaub, “Pathogenicity of trypanosomatids on insects,” Parasitology Today, vol. 10, no. 12, pp. 463–468, 1994.
[80]
G. O. Poinar Jr. and S. R. Telford Jr., “Paleohaemoproteus burmacis gen. n., sp. n. (Haemospororida: Plasmodiidae) from an Early Cretaceous biting midge (Diptera: Ceratopogonidae),” Parasitology, vol. 131, no. 1, pp. 79–84, 2005.
[81]
A. Borkent, Biting Midges in the Cretaceous Amber of North America (Diptera: Ceratopogonidae), Backhuys, Leiden, The Netherlands, 1995.
[82]
S. S. Desser and G. F. Bennett, “The genera Leucocytozoon, Haemoproteus, and Hepatocystis,” in Parasitic Protozoa, J. P. Kreier and J. R. Baker, Eds., vol. 4, pp. 273–307, Academic Press, San Diego, Calif, USA, 2nd edition, 1993.
[83]
P. C. C. Garnham, Malaria Parasites and other Haemosporidia, Blackwell Scientific Publications, Oxford, UK, 1966.
[84]
C. T. Atkinson and C. van Riper III, “Pathogenicity and epizootiology of avian Haematozoa: Plasmodium, Leucocytoozoon, and Haemoproteus,” in Bird-Parasite Interactions: Ecology, Evolution, and Behaviour, J. E. Loye and M. Zuk, Eds., pp. 19–48, Oxford University Press, New York, NY, USA, 1991.
[85]
G. F. Bennett and M. A. Peirce, “Morphological form in the avian Haemoproteidae and an annotated checklist of the genus Haemoproteus Kruse, 1890,” Journal of Natural History, vol. 22, no. 6, pp. 1683–1696, 1988.
[86]
A. M. Fallis and D. M. Wood, “Biting midges (Diptera: Ceratopogonidae) as intermediate hosts for Haemoproteus of ducks,” Canadian Journal of Zoology, vol. 35, no. 3, pp. 425–435, 1957.
[87]
S. R. Telford Jr., “Haemoparasites of reptiles,” in Diseases of Amphibians and Reptiles, G. L. Hoff, F. L. Frye, and E. R. Jacobson, Eds., pp. 385–517, Plenum Press, New York, NY, USA, 1984.
[88]
J. R. Linley, “Biting midges (Diptera: Ceratopogonidae) as vectors of nonviral animal pathogens,” Journal of Medical Entomology, vol. 22, no. 6, pp. 589–599, 1985.
[89]
G. O. Poinar Jr., “Culex malariager, n. sp. (Diptera: Culicidae) from Dominican amber: the first fossil mosquito vector of Plasmodium,” Proceedings of the Entomological Society of Washington, vol. 107, no. 3, pp. 548–553, 2005.
[90]
G. O. Poinar Jr., “Plasmodium dominicana n. sp. (Plasmodiidae: Haemospororida) from Tertiary Dominican amber,” Systematic Parasitology, vol. 61, no. 1, pp. 47–52, 2005.
[91]
J. C. Kissinger, P. C. A. Souza, C. O. Soares et al., “Molecular phylogenetic analysis of the avian malarial parasite Plasmodium (Novyella) juxtanucleare,” Journal of Parasitology, vol. 88, no. 4, pp. 769–773, 2002.
[92]
G. O. Poinar Jr., T. J. Zavortink, T. Pike, and P. A. Johnston, “Paleoculicis minutus (Diptera: Culicidae) n. gen., n. sp., from Cretaceous Canadian amber, with a summary of described fossil mosquitoes,” Acta Geologica Hispanica, vol. 35, no. 1-2, pp. 119–128, 2000.
[93]
A. P. Waters, D. G. Higgins, and T. F. McCutchan, “Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3140–3144, 1991.
[94]
R. B. McGhee, “The adaptation of the avian malaria parasite Plasmodium lophurae to a continuous existence in infant mice,” Journal of Infectious Diseases, vol. 88, no. 1, pp. 86–97, 1951.
[95]
T. J. Zavortink and G. O. Poinar Jr., “Anopheles (Nyssorhynchus) dominicanus sp. n. (Diptera: Culicidae) from Dominican amber,” Annals of the Entomological Society of America, vol. 93, no. 6, pp. 1230–1235, 2000.
[96]
N. Cerutti, A. Marin, E. R. Massa, and D. Savoia, “Immunological investigation of malaria and new perspectives in paleopathological studies,” Bollettino della Società Italiana di Biologia Sperimentale, vol. 75, no. 3-4, pp. 17–20, 1999.
[97]
R. L. Miller, S. Ikram, G. J. Armelagos et al., “Diagnosis of Plasmodium falciparum infections in mummies using the rapid manual ParaSight(TM)-F test,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 88, no. 1, pp. 31–32, 1994.
[98]
G. O. Poinar Jr. and A. Brown, “The first fossil streblid bat fly, Enischnomyia stegosoma n. g., n. sp. (Diptera: Hippoboscoidea: Streblidae),” Systematic Parasitology, vol. 81, no. 2, pp. 79–86, 2012.
[99]
G. O. Poinar Jr., “Vetufebrus ovatus n. gen., n. sp. (Haemospororida: Plasmodiidae) vectored by a streblid bat fly (Diptera: Streblidae) in Dominican amber,” Parasites and Vectors, vol. 4, article 229, 2011.
[100]
I. F. Keymer, “Protozoa,” in Diseases of the Reptilia, J. E. Cooper and O. F. Jackson, Eds., vol. 1, pp. 233–290, Academic Press, London, UK, 1981.
[101]
G. O. Poinar Jr. and A. J. Boucot, “Evidence of intestinal parasites of dinosaurs,” Parasitology, vol. 133, no. 2, pp. 245–249, 2006.
[102]
W. Frank, “Non-hemoparasitic protozoans,” in Diseases of Amphibians and Reptiles, G. L. Hoff, F. L. Frye, and E. R. Jacobson, Eds., pp. 259–384, Plenum Press, New York, NY, USA, 1984.
[103]
R. R. Kudo, Protozoology, Charles Thomas, Springfield, Ill, USA, 1954.
[104]
F. L. Frye, Biomedical and Surgical Aspects of Captive Reptile Husbandry, Krieger, Malabar, Fla, USA, 2nd edition, 1991.
[105]
M. L. Goncalves, V. L. da Silva, C. M. de Andrade et al., “Amoebiasis distribution in the past: first steps using an immunoassay technique,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 98, no. 2, pp. 88–91, 2004.
[106]
M. L. C. Gon?alves, A. Araújo, and L. F. Ferreira, “Human intestinal parasites in the past: new findings and a review,” Memórias do Instituto Oswaldo Cruz, vol. 98, no. 1, pp. 103–118, 2003.
[107]
I. Desportes and J. Schrevel, Treatise on Zoology—Anatomy, Taxonomy, Biology: The Gregarines: The Early Branching Apicomplexa, vol. 1, 2013.
[108]
I. Desportes and J. Schrevel, Treatise on Zoology—Anatomy, Taxonomy, Biology: The Gregarines: The Early Branching Apicomplexa, vol. 2, 2013.
[109]
G. O. Poinar Jr. and G. M. Thomas, Laboratory Guide to Insect Pathogens and Parasites, Plenum Press, New York, NY, USA, 1984.
[110]
G. O. Poinar Jr., “Primigregarina burmanica n. gen., n. sp., an early cretaceous gregarine (Apicomplexa: Eugregarinorida) parasite of a cockroach (Insecta: Blattodea),” in Fossil Behavior Compendium, A. J. Boucot and G. O. Poinar Jr., Eds., pp. 54–56, CRC Press, Boca Raton, Fla, USA, 2010.
[111]
G. Poinar Jr., “Fossil gregarines in Dominican and Burmese amber: examples of accelerated development?” Palaeodiversity, vol. 5, pp. 1–6, 2013.
[112]
G.-H. Sung, G. O. Poinar Jr., and J. W. Spatafora, “The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses,” Molecular Phylogenetics and Evolution, vol. 49, no. 2, pp. 495–502, 2008.
[113]
G. O. Poinar Jr. and G. M. Thomas, “An entomophthoralen fungus from Dominican amber,” Mycologia, vol. 74, pp. 332–334, 1982.
[114]
G. O. Poinar Jr. and G. M. Thomas, “A fossil entomogenous fungus from Dominican amber,” Experientia, vol. 40, no. 6, pp. 578–579, 1984.
[115]
H.-B. Jansson and G. O. Poinar Jr., “Some possible fossil nematophagous fungi,” Transactions of the British Mycological Society, vol. 87, no. 3, pp. 471–474, 1986.
[116]
W. Morrow, “Holocene coccidioidomycosis: valley fever in early Holocene bison (Bison antiquus),” Mycologia, vol. 98, no. 5, pp. 669–677, 2006.
[117]
W. R. Harrison, C. F. Merbs, and C. R. Leathers, “Evidence of coccidioidomycosis in the skeleton of an ancient Arizona Indian,” Journal of Infectious Diseases, vol. 164, no. 2, pp. 436–437, 1991.
[118]
M. Sherwood-Pike, “Fossil evidence for fungus-plant interactions,” in Evolutionary Paleobiology of Behavior and Coevolution, A. J. Boucot, Ed., pp. 118–123, Elsevier, Amsterdam, The Netherlands, 1990.
[119]
T. N. Taylor and E. L. Taylor, The Biology and Evolution of Fossil Plants, Prentice Hall, Englewood Cliffs, NJ, USA, 1993.
[120]
D. Redecker, R. Kodner, and L. E. Graham, “Glomalean fungi from the Ordovician,” Science, vol. 289, no. 5486, pp. 1920–1921, 2000.
[121]
T. N. Taylor, H. Hass, and W. Remy, “Devonian fungi: interactions with the green alga Palaeonitella,” Mycologia, vol. 84, no. 6, pp. 901–910, 1992.
[122]
H. Hass, T. N. Taylor, and W. Remy, “Fungi from the lower Devonian Rhynie chert: mycoparasitism,” The American Journal of Botany, vol. 81, no. 1, pp. 29–37, 1994.
[123]
G. O. Poinar Jr. and R. Buckley, “Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber,” Mycological Research, vol. 111, no. 4, pp. 503–506, 2007.
[124]
T. N. Taylor, H. Hass, H. Kerp, M. Krings, and R. T. Hanlin, “Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism,” Mycologia, vol. 97, no. 1, pp. 269–285, 2005.
[125]
R. S. Currah and R. A. Stockey, “A fossil smut fungus from the anthers of an Eocene angiosperm,” Nature, vol. 350, no. 6320, pp. 698–699, 1991.
[126]
Z.-Q. Wang, “Permian Supaia fronds and an associated Autunia fructification from Shanxi, China,” Palaeontology, vol. 40, pp. 245–277, 1997.
[127]
G. O. Poinar Jr., “Coelomycetes in Dominican and Mexican amber,” Mycological Research, vol. 107, no. 1, pp. 117–122, 2003.
[128]
G. O. Poinar Jr. and R. Buckley, “Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber,” Journal of Invertebrate Pathology, vol. 93, no. 1, pp. 36–41, 2006.
[129]
G. O. Poinar Jr., “Paleochordodes protus n.g., n.sp. (Nematomorpha, Chordodidae), parasites of a fossil cockroach, with a critical examination of other fossil hairworms and helminths of extant cockroaches (Insecta: Blattaria),” Invertebrate Biology, vol. 118, no. 2, pp. 109–115, 1999.
[130]
S. Namnjou, M. Pedram, G. O. Poinar Jr., E. Pourjam, and M. R. Atighi, “Novel host associations for dorylaim nematodes (Nematoda: Dorylaimida),” International Journal of Nematology, vol. 23, pp. 104–107, 2013.
[131]
G. O. Poinar Jr., A. Acra, and F. Acra, “Animal-animal parasitism in Lebanese amber,” Medical Science Review, vol. 22, no. 2, article 159, 1994.
[132]
G. O. Poinar Jr., “New fossil nematodes in Dominican and Baltic amber,” Nematology, vol. 14, no. 4, pp. 483–488, 2012.
[133]
G. O. Poinar Jr., “The mycetophagous and entomophagous stages of Iotonchium californicum n.sp. (Iotonchiidae: Tylenchida),” Revue de Nématologie, vol. 14, no. 4, pp. 565–580, 1991.
[134]
G. O. Poinar Jr., “Taxonomy and biology of Steinernematidae and Heterorhabditidae,” in Entomopathogenic Nematodes in Biological Control, R. Gaugler and H. K. Kaya, Eds., pp. 23–61, CRC Press, Boca Raton, Fla, USA, 1990.
[135]
V. B. Dubinin, “The presence of Pleistocene lice (Anoplura) and nematodes in the cadaver of a fossilised gopher,” Doklady Akademii Nauk SSSR, vol. 62, pp. 417–420, 1948.
[136]
A. J. G. Araújo, U. E. C. Confalonieri, and L. F. Ferreira, “Oxyurid (Nematoda) egg from coprolites from Brazil,” Journal of Parasitology, vol. 68, no. 3, pp. 511–512, 1982.
[137]
G. D. Schmidt, D. W. Duszynski, and P. S. Martin, “Parasites of the extinct shasta ground sloth, Northotheriops shastensis, in Rampart Cave, Arizona,” Journal of Parasitology, vol. 78, no. 5, pp. 811–816, 1992.
[138]
G. F. Fry and J. G. Moore, “Enterobius vermicularis: 10,000-year-old human infection,” Science, vol. 166, no. 3913, p. 1620, 1969.
[139]
A. M. I?iguez, K. Reinhard, M. L. Carvalho Gon?alves, L. F. Ferreira, A. Araújo, and A. C. P. Vicente, “SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-Columbian human coprolites,” International Journal for Parasitology, vol. 36, no. 13, pp. 1419–1425, 2006.
[140]
O. Wei, “Internal organs of a 2100-year-old female corpse,” The Lancet, vol. 2, no. 7839, p. 1198, 1973.
[141]
P. D. Horne, “First evidence of enterobiasis in ancient Egypt,” Journal of Parasitology, vol. 88, no. 5, pp. 1019–1021, 2002.
[142]
H. Hasegawa, “Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary studes of pinworms,” in Primate Parasite Ecology, the Dynamics and Study of Host-Parasite Relationships, M. A. Huffman and C. A. Chapman, Eds., pp. 29–46, Cambridge University Press, Cambridge, UK, 2009.
[143]
M. M. Kliks, “Helminths as heirlooms and souvenirs: a review of New World paleoparasitology,” Parasitology Today, vol. 6, no. 4, pp. 93–100, 1990.
[144]
F. Bouchet, D. Baffier, M. Girard, P. Morel, J. C. Paicheler, and F. David, “Paléoparasitologie en contexte Pléistocène premières observations á la Grand Grotte d’Arcy-sur-Cure (Yonne), France,” Compte Rendu Academie Science Paris, vol. 319, pp. 147–151, 1996.
[145]
D. Fossey, Gorillas in the Mist, Houghton Mifflin Company, Boston, Mass, USA, 1983.
[146]
M. Stuart, V. Pendergast, S. Rumfelt et al., “Parasites of wild howlers (Alouatta spp.),” International Journal of Primatology, vol. 19, no. 3, pp. 493–512, 1998.
[147]
J. Dupain, C. Nell, K. J. Petrzelková, P. Garcia, D. Modry, and F. P. Gordo, “Gastrointestinal parasites of bonobos in the Lomako Forest, Democratic Republic of Congo,” in Primate Parasite Ecology, the Dynamics and Study of Host-Parasite Relationships, M. A. Huffman and C. A. Chapman, Eds., pp. 297–310, Cambridge University Press, Cambridge, UK, 2009.
[148]
L. F. Ferreira, A. Araújo, U. Confalonieri, and C. M. R. Filho, “The finding of hookworm eggs in human coprolites from years BP, from Piauí, Brasil,” Anais da Academia Brasileira de Ciencias, vol. 59, pp. 280–281, 1987.
[149]
S. Dommelier-Espejo, Contribution à l’étude Paléoparasitologique des sites Néolithique en environment Lacustre dans les Domaines Jurassien et Péri-alpin" [Ph.D. Dissertationz], University de Reims, Reims, France, 2001.
[150]
M. A. Huffman, P. Pebsworth, C. Bakuneeta, S. Gotoh, and M. Bardi, “Chimpanzee-parasite ecology at Budongo Forest (Uganda) and the Mahale Mountains (Tanzania): influence of climatic differences on self-medicative behaviour,” in Primate Parasite Ecology, the Dynamics and Study of Host-Parasite Relationships, M. A. Huffman and C. A. Chapman, Eds., pp. 331–350, Cambridge University Press, Cambridge, UK, 2009.
[151]
B. de Thoisy, I. Vogel, J.-M. Reynes et al., “Health evaluation of translocated free-ranging primates in French Guiana,” The American Journal of Primatology, vol. 54, no. 1, pp. 1–16, 2001.
[152]
A. C. Evans, M. B. Markus, R. J. Mason, and R. Steel, “Late stone-age coprolite reveals evidence of prehistoric parasitism,” South African Medical Journal, vol. 86, pp. 274–275, 1996.
[153]
L. F. Ferreira, A. Araujo, U. Confalonieri, M. Chame, and D. C. Gomes, “Trichuris eggs in animal coprolites dated from 30,000 years ago,” Journal of Parasitology, vol. 77, no. 3, pp. 491–493, 1991.
[154]
C. A. Chapman, J. M. Rothman, and S. A. M. Hodder, “Can parasite infections be a selective force influencing primate group size? A test with red colobus,” in Primate Parasite Ecology, the Dynamics and Study of Host-Parasite Relationships, M. A. Huffman and C. A. Chapman, Eds., pp. 423–440, Cambridge University Press, Cambridge, UK, 2009.
[155]
A. Hernandez, A. J. Macintosh, and M. A. Huffman, “Primate parasite ecology: patterns and predictions from an ongoing study of Japanese macaques,” in Primate Parasite Ecology, the Dynamics and Study of Host-Parasite Relationships, M. A. Huffman and C. A. Chapman, Eds., pp. 387–410, Cambridge University Press, Cambridge, UK, 2009.
[156]
H. K. Ooi, F. Tenora, K. Itoh, and M. Kamiya, “Comparative study of Trichuris trichiura from non-human primates and from man, and their difference with T. suis,” Journal of Veterinary Medical Science, vol. 55, no. 3, pp. 363–366, 1993.
[157]
G. H. Liu, R. B. Gasser, P. Nejsum et al., “Mitochondrial and nuclear ribosomal DNA evidence supports the existence of a new Trichuris species in the endangered Fran?ois' leaf-monkey,” PLoS ONE, vol. 8, no. 6, 2103.
[158]
G. O. Poinar Jr., H. Kerp, and H. Hass, “Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants,” Nematology, vol. 10, no. 1, pp. 9–14, 2008.
[159]
S. Dommelier-Espejo, Contribuition à L'étude Paléoparasitologique des Sites Néolithiques en Environnement Lacustre dans les Domaines Jurassienet Péri-alpin, [Ph.D. thesis], Université de Reims, Reims, France, 2001.
[160]
A. M. Deelder, R. L. Miller, N. de Jonge, and F. W. Krijger, “Detection of schistosome antigen in mummies,” The Lancet, vol. 335, no. 8691, pp. 724–725, 1990.
[161]
L. Despres, D. Imbert-Establet, C. Combes, and F. Bonhomme, “Molecular evidence linking hominid evolution to recent radiation of schistosomes (Platyhelminthes: Trematoda),” Molecular Phylogenetics and Evolution, vol. 1, no. 4, pp. 295–304, 1992.
[162]
P. C. Dentzien-Dias, G. O. Poinar Jr., A. E. Q. de Figueiredo, A. C. L. Pacheco, B. L. D. Horn, and C. L. Schultz, “Tapeworm eggs in a 270 million-year-old shark coprolite,” PLoS ONE, vol. 8, no. 1, Article ID e55007, 2013.
[163]
E. P. Hoberg, N. L. Alkire, A. de Queiroz, and A. Jones, “Out of Africa: origins of the Taenia tapeworms in humans,” Proceedings of the Royal Society of London B: Biological Sciences, vol. 268, no. 1469, pp. 781–787, 2001.
[164]
T. A. Reyman, M. R. Zimmerman, and P. K. Lewin, “Autopsy of an Egyptian mummy (Nakht—ROM I)): histopathologic investigation,” Canadian Medical Association Journal, vol. 117, no. 5, pp. 461–476, 1977.
[165]
G. O. Poinar Jr., “Fossil evidence of spider parasitism by Ichneumonidae,” Journal of Arachnology, vol. 14, no. 3, pp. 399–400, 1987.
[166]
G. O. Poinar Jr., “Fossil evidence of spider egg parasitism by ichneumonid wasps,” in Fossil Spiders in Amber and Copal, J. Wunderlich, Ed., vol. 3, pp. 1874–1877, Beitr?ge zur Araneologie, 2004.
[167]
G. O. Poinar Jr., “Behaviour and development of Elasmosoma sp. (Neoneurinae: Braconidae: Hymenoptera), an endoparasite of Formica ants (Formicidae: Hymenoptera),” Parasitology, vol. 128, no. 5, pp. 521–531, 2004.
[168]
G. O. Poinar Jr. and J. C. Miller, “First fossil record of endoparasitism of adult ants (Formicidaes: Hymenoptera) by Braconidae (Hymenoptera),” Annals of the Entomological Society of America, vol. 95, no. 1, pp. 41–43, 2002.
[169]
H. Lutz, “Giant ants and other rarities: the insect fauna,” in Messel, an Insight Into the History of Life and of the Earth, S. Schaal and W. Ziegler, Eds., pp. 55–67, Clarendon Press, Oxford, UK, 1992.
[170]
H. Pohl and R. Kinzelbach, “First record of a female stylopid (Strepsiptera: ?Myrmecolacidae) parasite of a prionomyrmecine ant (Hymenoptera: Formicidae) in Baltic amber,” Insect Systematics and Evolution, vol. 32, no. 2, pp. 143–146, 2001.
[171]
G. Poinar, “Evidence of parasitism by Strepsiptera in Dominican amber,” BioControl, vol. 49, no. 3, pp. 239–244, 2004.
[172]
G. O. Poinar Jr. and N. H. Anderson, “Hymenopteran parasites of Trichoptera: the first fossil record,” in Proceedings of the 11th International Symposium on Trichoptera, Osaka, pp. 343–346, Tokai University Press, Tokyo, Japan, 2003.
[173]
G. O. Poinar Jr., “Stenaspidiotus microptilus n. gen., n. sp. (Coleoptera: Chrysomelidae: Chrysomelinae) in Dominican amber, with evidence of tachinid (Diptera: Tachinidae) oviposition,” Historical Biology, vol. 25, no. 1, pp. 101–105, 2013.
[174]
H. Krauss, A. Weber, M. Appel et al., Zoonoses: Infectious Diseases Transmissible from Animals to Humans, The American Society for Microbiology Press, Washington, DC, USA, 3rd edition, 2004.
[175]
J. J. Rousset, C. Heron, and P. Metrot, “Human helminthiasis at the Gauls,” Histoire des Sciences Medicales, vol. 30, no. 1, pp. 41–46, 1996.
[176]
F. Bouchet, “Recovery of helminth eggs from archeological excavations of the Grand Louvre (Paris, France),” Journal of Parasitology, vol. 81, no. 5, pp. 785–787, 1995.
[177]
F. Bouchet, S. Bentrad, and J. C. Paicheler, “Enquête épidémiologique sur les helminthiases à la cour de Louis XIV,” Mini-Synthese Medical Science, vol. 14, no. 4, pp. 463–466, 1998.
[178]
L. Szidat, “über die erhaltungsf?higkeit von helmintheneiern in Vor- und Frühgeschichtlichen moorleichen,” Zeitschrift für Parasitenkunde, vol. 13, no. 3, pp. 265–274, 1944.
[179]
J. Jansen Jr. and H. J. Over, “Het voorkomen van parasieten in terpmateriaal uit Noordwest Duitsland,” Tijdschrift voor Diergeneeskunde, vol. 87, pp. 1377–1379, 1962.
[180]
B. Herrmann, “Parasitologisch-epidemiologische auswertungen mittelalterlicher kloaken,” Zeitschrift für Arch?ologie des Mittelalters, vol. 13, pp. 131–161, 1985.
[181]
A. K. Jones and C. Nicholson, “Recent finds of Trichuris and Ascaris ova from Britain,” Paleopathology Newsletter, no. 62, pp. 5–6, 1988.
[182]
A. W. Pike, “Recovery of helminth eggs from archaeological excavations, and their possible usefulness in providing evidence for the purpose of an occupation,” Nature, vol. 219, no. 5151, pp. 303–304, 1968.
[183]
A. K. G. Jones, “Parasitological investigations on Lindow Man,” in Lindow Man: The Body in the Bog, I. M. Stead, J. B. Bourke, and D. Brothwell, Eds., pp. 136–139, British Museum Publications, London, UK, 1986.
[184]
A. Wilson and D. J. Rackham, “Parasite eggs,” in The Archaeology of York: The Past Environment of York, the Environment Evidence from the Church Street Sewer System, pp. 32–33, Council for British Archaeology, York, UK, 1976.
[185]
A. K. G. Jones, “Recent finds of intestinal parasite ova at York, England,” in Proceeding of the 4th European Members Meeting on Paleopathology, p. 7, Antwerpen, Belgium, 1982.
[186]
A. W. Pike, “The recovery of parasite eggs from ancient cesspit and latrine deposits: an approach to the study of early parasite infections,” in Diseases in Antiquity, D. Brothwell and A. T. Sandison, Eds., pp. 184–188, Charles C Thomas, Springfield, Mass, USA, 1967.
[187]
E. L. Taylor, “Parasitic helminths in medieval remains,” Veterinary Record, vol. 67, pp. 218–228, 1955.
[188]
A. W. Pike, “Parasite eggs,” in Excavations in Medieval Southampton, C. Platt and R. Coleman-Smith, Eds., pp. 347–348, Leicester University Press, Leicester, UK, 1975.
[189]
A. K. Jones and C. Nicholson, “Recent finds of Trichuris and Ascaris ova from Britain,” Paleopathology News, no. 62, pp. 5–6, 1988.
[190]
D. P. Moore, “Life seen from a medieval latrine,” Nature, vol. 294, no. 5842, p. 614, 1981.
[191]
G. F. Fry, “Apud reinhard KJ 1990, archaeoparasitology in North America,” The American Journal of Physical Anthropology, vol. 82, no. 2, pp. 145–163, 1974.
[192]
C. T. Faulkner, S. Patton, and S. S. Johnson, “Prehistoric parasitism in Tennessee: evidence from the analysis of desiccated fecal material collected from big bone cave, van buren county, tennessee,” Journal of Parasitology, vol. 75, no. 3, pp. 461–463, 1989.
[193]
R. H. Hevly, R. E. Kelly, G. A. Anderson, and S. J. Olsen, “Apud Reinhard KJ 1990, archaeoparasitology in North America,” The American Journal of Physical Anthropology, vol. 82, pp. 145–163, 1979.
[194]
F. Bouchet, D. West, C. Lefèvre, and D. Corbett, “Identification of parasitoses in a child burial from Adak Island, (Central Aleutian Island, Alaska),” Comptes Rendus de l'Académie des Sciences—Series III—Sciences de la Vie, vol. 324, no. 2, pp. 123–127, 2001.
[195]
K. J. Reinhard, “Archaeparasitology in North America,” The American Journal of Physical Anthropology, vol. 82, no. 2, pp. 145–163, 1990.
[196]
A. C. Evans, M. B. Markus, R. J. Mason, and R. Steel, “Late stone age coprolite reveals evidence of prehistoric parasitism,” South African Medical Journal, vol. 86, pp. 274–275, 1996.
[197]
A. Cockburn, R. A. Barraco, T. A. Reyman, and W. H. Peck, “Autopsy of an Egyptian mummy,” Science, vol. 187, no. 4182, pp. 1155–1160, 1975.
[198]
P. D. Mitchell and E. Stern, “Parasitic intestinal helminth ova from the latrines of the 13th century crusader hospital of St. John in Acre, Israel,” in Proceeding of the 13th Biennial European Members Meeting of the Paleopathology Association, pp. 21–22, Chieti, Italy, 2000.
[199]
R. Patrucco, R. Tello, and D. Bonavia, “Parasitological studies of coprolites of pre-hispanic Peruvian populations,” Current Anthropology, vol. 24, pp. 393–394, 1983.
[200]
D. Leles, A. Araújo, L. F. Ferreira, A. C. P. Vicente, and A. M. I?iguez, “Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: new scenery of ascariasis in pre-Columbian South America times,” Memórias do Instituto Oswaldo Cruz, vol. 103, no. 1, pp. 106–108, 2008.
[201]
J. R. Andrews, “Ascaris egg in coprolite material,” New Zealand Medical Journal, vol. 89, no. 633, p. 274, 1979.