全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Forecasting Daily Precipitation Using Hybrid Model of Wavelet-Artificial Neural Network and Comparison with Adaptive Neurofuzzy Inference System (Case Study: Verayneh Station, Nahavand)

DOI: 10.1155/2014/279368

Full-Text   Cite this paper   Add to My Lib

Abstract:

Doubtlessly the first step in a river management is the precipitation modeling over the related watershed. However, considering high-stochastic property of the process, many models are still being developed in order to define such a complex phenomenon in the field of hydrologic engineering. Recently artificial neural network (ANN) as a nonlinear interextrapolator is extensively used by hydrologists for precipitation modeling as well as other fields of hydrology. In the present study, wavelet analysis combined with artificial neural network and finally was compared with adaptive neurofuzzy system to predict the precipitation in Verayneh station, Nahavand, Hamedan, Iran. For this purpose, the original time series using wavelet theory decomposed to multiple subtime series. Then, these subseries were applied as input data for artificial neural network, to predict daily precipitation, and compared with results of adaptive neurofuzzy system. The results showed that the combination of wavelet models and neural networks has a better performance than adaptive neurofuzzy system, and can be applied to predict both short- and long-term precipitations. 1. Introduction Estimation and forecasting of precipitation and its runoff have played effective and critical role in the watershed management and proper utilization of watershed, dams, and reservoirs and finally minimizing the damage caused by floods and drought. Therefore, this subject is the hydrologist’s interest. Predicting any event forms the basis of crisis management, and when this goal can be achieved, the predicting model could be accessed. Several methods are used for predicting hydrological events such as precipitation. Using each of these methods is always with some error in results. Accurate prediction of hydrological signals such as precipitation can provide useful information to predict amount of precipitation for water resources and soil management in a basin. In addition, correct prediction of hydrological signals plays an important role in reducing the effects of drought on water resources systems. Hydrological systems are affected by many factors such as climate, land cover, soil infiltration rates, evapotranspiration which is dependent on stochastic components, multitemporal scales, and above-mentioned nonlinear characteristics. Despite nonlinear relationships, uncertainty, and high lack of precision and variables temporal and spatial characteristics in water circulation system, none of the statistical and conceptual models which are proposed for accurate precipitation and runoff modeling were

References

[1]  ?. Ki?i, “Stream flow forecasting using neuro-wavelet technique,” Hydrological Processes, vol. 22, no. 20, pp. 4142–4152, 2008.
[2]  C. Hamza?ebi, “Improving artificial neural networks' performance in seasonal time series forecasting,” Information Sciences, vol. 178, no. 23, pp. 4550–4559, 2008.
[3]  V. Nourani, M. T. Alami, and M. H. Aminfar, “A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation,” Engineering Applications of Artificial Intelligence, vol. 22, no. 3, pp. 466–472, 2009.
[4]  F. Salerno and G. Tartari, “A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments,” Journal of Hydrology, vol. 376, no. 1-2, pp. 295–306, 2009.
[5]  L. H. C. Chua and T. S. W. Wong, “Improving event-based rainfall-runoff modeling using a combined artificial neural network-kinematic wave approach,” Journal of Hydrology, vol. 390, no. 1-2, pp. 92–107, 2010.
[6]  M. Komasi, Modelling rainfall—runoff model using a combination of wavelet—ANN, Tabriz University, Tabriz, Iran, 2007.
[7]  J. Adamowski and K. Sun, “Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds,” Journal of Hydrology, vol. 390, no. 1-2, pp. 85–91, 2010.
[8]  V. Nourani, ?. Kisi, and M. Komasi, “Two hybrid artificial intelligence approaches for modeling rainfall-runoff process,” Journal of Hydrology, vol. 402, no. 1-2, pp. 41–59, 2011.
[9]  S. Asadi, J. Shahrabi, P. Abbaszadeh, and S. Tabanmehr, “A new hybrid artificial neural networks for rainfall-runoff process modeling,” Neurocomputing, vol. 121, pp. 470–480, 2013.
[10]  V. Nourani and M. Parhizkar, “Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall-runoff modeling,” Journal of Hydroinformatics, vol. 15, no. 3, pp. 829–848, 2013.
[11]  V. Nourani and M. Komasi, “A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process,” Journal of Hydrology, vol. 490, pp. 41–55, 2013.
[12]  A. Grossmann and J. Morlet, “Decomposition of hardy function into square integrable wavelets of constant shape,” SIAM Journal on Mathematical Analysis, vol. 5, pp. 723–736, 1984.
[13]  E. Fofola-Georgiou and P. Kumar, Eds., Wavelet in Geophysiscs, Academic Press, New York, NY, USA, 1995.
[14]  D. Labat, “Recent advances in wavelet analyses,” Journal of Hydrology, vol. 314, no. 1–4, pp. 275–288, 2005.
[15]  S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, Calif, USA, 2nd edition, 1998.
[16]  D. Labat, R. Ababou, and A. Mangin, “Rainfall-runoff relations for karstic springs,” Journal of Hydrology, vol. 238, no. 3-4, pp. 149–178, 2000.
[17]  V. Nourani, M. Komasi, and A. Mano, “A multivariate ANN-wavelet approach for rainfall-runoff modeling,” Water Resources Management, vol. 23, no. 14, pp. 2877–2894, 2009.
[18]  S. Riad, J. Mania, L. Bouchaou, and Y. Najjar, “Rainfall-runoff model usingan artificial neural network approach,” Mathematical and Computer Modelling, vol. 40, no. 7-8, pp. 839–846, 2004.
[19]  A. Talei, L. H. C. Chua, and T. S. W. Wong, “Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling,” Journal of Hydrology, vol. 391, no. 3-4, pp. 248–262, 2010.
[20]  T. J. Ross, Fuzzy Logic with Engineering Application, McGraw Hill, New York, NY, USA, 3rd edition, 1995.
[21]  J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ, USA, 1997.
[22]  C. T. Cheng, J.-Y. Lin, Y.-G. Sun, and K. Chau, “Long-term prediction of discharges in manwan hydropower using adaptive-network-based fuzzy inference systems models,” in Advances in Natural Computation, vol. 3612 of Lecture Notes in Computer Science, pp. 1152–1161, Springer, Berlin, Germany, 2005.
[23]  M. Brown and C. Harris, Neuro-Fuzzy Adaptive Modeling and Control, Prentice-Hall, New York, NY, USA, 1994.
[24]  T. Rajaee, S. A. Mirbagheri, M. Zounemat-Kermani, and V. Nourani, “Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models,” Science of the Total Environment, vol. 407, no. 17, pp. 4916–4927, 2009.
[25]  M. Aqil, I. Kita, A. Yano, and S. Nishiyama, “A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff,” Journal of Hydrology, vol. 337, no. 1-2, pp. 22–34, 2007.
[26]  J. S. R. Jang, C. T. Sun, and E. Mizutani, Neurofuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ, USA, 1995.
[27]  ?. Ki?i, “Evolutionary fuzzy models for river suspended sediment concentration estimation,” Journal of Hydrology, vol. 372, no. 1–4, pp. 68–79, 2009.
[28]  P. C. Nayak, K. P. Sudheer, D. M. Rangan, and K. S. Ramasastri, “A neuro-fuzzy computing technique for modeling hydrological time series,” Journal of Hydrology, vol. 291, no. 1-2, pp. 52–66, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413