全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modelling and Simulation of Static Excitation System in Synchronous Machine Operation and Investigation of Shaft Voltage

DOI: 10.1155/2014/727295

Full-Text   Cite this paper   Add to My Lib

Abstract:

Static excitation system (SES) has been implemented in a specially designed synchronous machine installed in a testing laboratory. This is a large capacity single machine operated in dual mode (i.e., motor or generator) with the help of static sources. It is well known that bearings of the rotating machines are vulnerable to the effects of the shaft voltages caused by the static sources. Shaft voltage is the prime concern for this special machine too due to SES. To find out the exact cause of the shaft voltage, SES of this machine has been modelled with Power Systems software. Various waveforms drawn from the model are validated through computer simulations and actual laboratory tests. Sources of shaft voltages are also analysed thereafter with the FFT analysis of the rotor voltage and current waveforms. 1. Introduction There are various means of supplying dc power to the field winding of an electric machine, for example, dc generator, rotating exciter, and static converter. After the invention of semiconductor devices, static converter has become popular. It is also known as static excitation system (SES). SES came into existence in the beginning of the sixties. Till then the alternators were getting dc field power in the rotor from a dc generator, separately or coupled with the same alternator shaft. SES was experimented successfully on a steam turbine alternator in the year 1962 [1]. Later on it was implemented not only on the new alternators but also on the existing machines. Due to ease in retrofitting, the old rotating exciters were also replaced with the SES. Starting with steam power generator the SES was extended up to the captive power plant in paper and pulp industries, pump storage power plant, electric locomotive, and gas power plant [2–6]. SES has also been implemented in high power short circuit alternator [7]. Short circuit alternator is basically a synchronous generator in a high power test laboratory which supplies high value of short circuit currents during test on electrical power equipment. A strong dc field is essential to establish and maintain the alternator terminal voltage during the short circuit test. Old testing laboratories were equipped with a separately excited high power dc generator run by an induction motor. A permanent magnet dc generator feeds the field of high power dc generator. In cascading mode a high power dc is produced which is fed into alternator rotor through slip rings and brushes. Viewing the benefits of SES, short circuit alternators are also started equipped with high power thyristors and fast acting

References

[1]  L. J. Lane, D. F. Rogers, and P. A. Vance, “Design and tests of a static excitation system for industrial and utility steam turbine-generators,” AIEE, vol. 80, no. 3, pp. 1077–1085, 1962.
[2]  R. C. Schaefer, “Applying static excitation systems,” IEEE Industry Applications Magazine, vol. 4, no. 6, pp. 41–49, 1998.
[3]  Y.-Z. Zhang, “Study of process of starting pumped storage machines by static frequency converter with field current controlled,” in Proceedings of the 2nd International Conference on Signal Processing Systems (ICSPS '10), pp. V1224–V1227, July 2010.
[4]  R. B. Fisher, “Introduction of static frequency converters on SEPTA's 25-Hz commuter rail system,” in 1990 ASME/IEEE Joint Railroad Conference, pp. 149–155, April 1990.
[5]  S.-H. Park, S.-H. Hwang, J.-M. Kim, H.-S. Ryu, and J.-H. Lee, “A starting-up control algorithm of large synchronous generation motor for gas turbosets,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '08), pp. 502–508, Cambridge, UK, June 2008.
[6]  H. Taguchi, S. Tamai, Y. Hosokawa, and A. Ando, “APS control method for gas turbine startup by SFC,” in Proceedings of the International Power Electronics Conference, pp. 264–269, IEEE, 2010.
[7]  A. K. Datta, M. Dubey, N. R. Mondal, and B. V. Raghavaiah, “Motor-less operation of short circuit generator—a CPRI perspective,” in Proceedings of the International Conference on Electrical Power and Energy Systems (ICEPES '10), pp. 439–445, MANIT, Bhopal, India, August 2010.
[8]  A. K. Datta, M. A. Ansari, N. R. Mondal, and B. V. Raghavaiah, “A novel use of power electronics: prime mover-less alternator with static drive & excitation system,” International Journal of Electronics & Communication Technology, vol. 3, no. 1, pp. 472–475, 2012.
[9]  A. K. Datta, M. Dubey, and S. Jain, “Study of shaft voltage & bearing currents in electrical machines,” in Proceedings of the IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS '12), pp. 1–4, Bhopal, India, March 2012.
[10]  J. M. Erdman, R. J. Kerkman, D. W. Schlegel, and G. L. Skibinski, “Effect of PWM inverters on AC motor bearing currents and shaft voltages,” IEEE Transactions on Industry Applications, vol. 32, no. 2, pp. 250–259, 1996.
[11]  C. Ammann, K. Reichert, R. Joho, and Z. Posedel, “Shaft voltages in generators with static excitation systems—problems and solution,” IEEE Transactions on Energy Conversion, vol. 3, no. 2, pp. 409–419, 1988.
[12]  S. Chen and T. A. Lipo, “Circulating type motor bearing current in inverter drives,” IEEE Industry Applications Magazine, vol. 4, no. 1, pp. 32–38, 1998.
[13]  A. Muetze and A. Binder, “Calculation of circulating bearing currents in machines of inverter-based drive systems,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 932–938, 2007.
[14]  A. Muetze, “On a new type of inverter-induced bearing current in large drives with one journal bearing,” IEEE Transactions on Industry Applications, vol. 46, no. 1, pp. 240–248, 2010.
[15]  H.-S. Ryu, B. Kim, J. Lee, and I. Lim, “A study of synchronous motor drive using static frequency converter,” in Proceedings of the 12th International Power Electronics and Motion Control Conference (EPE-PEMC '06), pp. 1496–1499, IEEE, September 2006.
[16]  N. Zhu, D. Xu, B. Wu, N. R. Zargari, M. Kazerani, and F. Liu, “Common-mode voltage reduction methods for current-source converters in medium-voltage drives,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 995–1006, 2013.
[17]  R. S. Kanchan, P. N. Tekwani, and K. Gopakumar, “Three-level inverter scheme with common mode voltage elimination and dc link capacitor voltage balancing for an open-end winding induction motor drive,” IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1676–1683, 2006.
[18]  M. R. Baiju, K. K. Mohapatra, R. S. Kanchan, and K. Gopakumar, “A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 794–805, 2004.
[19]  K. K. Yuen, H. S. Chung, and V. S. Cheung, “An active low-loss motor terminal filter for overvoltage suppression and common-mode current reduction,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3158–3172, 2012.
[20]  Z. Zhao, Y. Zhong, H. Gao, L. Yuan, and T. Lu, “Hybrid selective harmonic elimination PWM for common-mode voltage reduction in three-level neutral-point-clamped inverters for variable speed induction drives,” IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1152–1158, 2012.
[21]  H. Akagi and K. Isozaki, “A hybrid active filter for a three-phase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 69–77, 2012.
[22]  F. Wang, “Motor shaft voltages and bearing currents and their reduction in multilevel medium-voltage PWM voltage-source-inverter drive applications,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1336–1341, 2000.
[23]  H. Akagi and T. Doumoto, “An approach to eliminating high-frequency shaft voltage and ground leakage current from an inverter-driven motor,” IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1162–1169, 2004.
[24]  A. K. Datta, M. Dubey, and S. Jain, “Effect of static power supply in alternator used for short-circuit testing-observation of shaft voltage,” IEEE Transactions on Power Electronics, 2014.
[25]  A. K. Datta, M. Dubey, and S. Jain, “Investigation of bearing currents in dual mode operation of synchronous machine with static excitation system,” Electrical and Electronics Engineering, vol. 2, no. 4, pp. 45–53, 2013.
[26]  A. K. Datta, M. Dubey, and S. Jain, “Study of shaft voltage on short circuit alternator with static frequency converter,” International Journal of Electrical, Electronic Science and Engineering, vol. 7, no. 11, pp. 692–698, 2013.
[27]  T.-J. Liang, J.-F. Chen, C.-L. Chu, and K.-J. Chen, “Analysis of 12 pulse phase control AC/DC converter,” in Proceedings of the 3rd IEEE International Conference on Power Electronics and Drive Systems (PEDS '99), pp. 779–783, Hong Kong, July 1999.
[28]  A. K. Datta, G. Venkateswarlu, M. A. Ansari, and N. R. Mondal, “Excitation control during short circuit test sequence of 1500?MVA short circuit generator,” in Proceedings of the International Conference on Advances in Computer, Electronics & Electrical Engineering (ICACEEE '12), pp. 207–211, Mumbai, India, March 2012.
[29]  The MathWorksTM , Inc., USA, Release 2008a (R2008a).
[30]  S. Bell, T. J. Cookson, S. A. Cope et al., “Experience with variable-frequency drives and motor bearing reliability,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1438–1446, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133