全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synchronous Current Compensator for a Self-Balanced Three-Level Neutral Point Clamped Inverter

DOI: 10.1155/2014/620607

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a synchronous current control method for a three-level neutral point clamped inverter. Synchronous reference frame control based on two decoupled proportional-integral (PI) controllers is used to control the current in direct and quadrature axes. A phase disposition pulse width modulation (PDPWM) method in regular symmetrical sampling is used for generating the inverter switching signals. To eliminate the harmonic content with no phase errors, two first-order low pass filters (LPFs) are used for the currents. The simulation of closed-loop control is done in Matlab/Simulink. The Vertex-5 field programmable gate array (FPGA) in Labview/CompactRio is used for the implementation of the control algorithm. The control and switch pulse generation are done in independent parallel loops. The synchronization of both loops is achieved by controlling the length of waiting time for each loop. The simulation results are validated with experiments. The results show that the control action is reliable and efficient for the load current control. 1. Introduction The efficient conversion of renewable energy to electrical energy is still a key area of research. All renewable energy projects require power electronics converters for interfacing with the grid and controlling the energy exchange. Most of the basic conversion strategy of renewable energy follows a two-step procedure. First step is to convert the variable AC to constant DC. Active rectifiers or passive rectifiers with DC/DC converters are the generally used methods to date. However, the main part of the conversion unit is an inverter. It is used not only for connecting to different loads, but also for providing the necessary control actions required for the load. To meet the high energy demand, conversion and integration of renewable energy sources are suggested universally. The majority of the renewable energy plants are geographically far from the load centers. The integration of this power needs a very long transmission cable to reach the point of common connection. High voltage power transmission meets better efficiency by reducing cable losses. Thereby, the use of multilevel converters is also gone up [1]. Different conventional topologies of multilevel inverter structures are proposed in [2]. Neutral point clamped (NPC) inverter is a widely accepted topology amongst these [3–6]. In most of the applications, the performance of the voltage source inverter (VSI) depends on the quality of the applied current control strategy. It enhances the control accuracy of the instantaneous current

References

[1]  S. Kouro, M. Malinowski, K. Gopakumar et al., “Recent advances and industrial applications of multilevel converters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553–2580, 2010.
[2]  J. Rodríguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724–738, 2002.
[3]  A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Transactions on Industry Applications, vol. IA-17, no. 5, pp. 518–523, 1981.
[4]  J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, “A survey on neutral-point-clamped inverters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2219–2230, 2010.
[5]  S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Gago, D. González, and J. Balcells, “Interfacing renewable energy sources to the utility grid using a three-level inverter,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1504–1511, 2006.
[6]  R. C. Portillo, M. M. Prats, J. I. Leon et al., “Modeling strategy for back-to-back three-level converters applied to high-power wind turbines,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1483–1491, 2006.
[7]  M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source pwm converters: a survey,” IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 691–703, 1998.
[8]  L. R. Limongi, R. Bojoi, G. Griva, and A. Tenconi, “Digital current-control schemes,” IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp. 20–31, 2009.
[9]  E. Twining and D. G. Holmes, “Grid current regulation of a three-phase voltage source inverter with an LCL input filter,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 888–895, 2003.
[10]  J. W. Choi and S. K. Sul, “Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling,” IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 179–185, 1998.
[11]  H. S. Song and K. Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 953–959, 1999.
[12]  M. Liserre, R. Teodorescu, and F. Blaabjerg, “Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 836–841, 2006.
[13]  I. J. Gabe, V. F. Montagner, and H. Pinheiro, “Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1444–1452, 2009.
[14]  J. E. Espinoza, J. R. Espinoza, and L. A. Morán, “A systematic controller-design approach for neutral-point-clamped three-level inverters,” IEEE Transactions on Industrial Electronics, vol. 52, no. 6, pp. 1589–1599, 2005.
[15]  O. Vodyakho and C. C. Mi, “Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1350–1363, 2009.
[16]  T. Ghennam, E. M. Berkouk, and B. Francois, “A novel space-vector current control based on circular hysteresis areas of a three-phase neutral-point-clamped inverter,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2669–2678, 2010.
[17]  R. Vargas, P. Cortés, U. Ammann, J. Rodríguez, and J. Pontt, “Predictive control of a three-phase neutral-point-clamped inverter,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2697–2705, 2007.
[18]  M. Chaves, E. Margato, J. F. Silva, S. F. Pinto, and J. Santana, “HVDC transmission systems: bipolar back-to-back diode clamped multilevel converter with fast optimum-predictive control and capacitor balancing strategy,” Electric Power Systems Research, vol. 81, no. 7, pp. 1436–1445, 2011.
[19]  V. Blasko, V. Kaura, and W. Niewiadomski, “Sampling of discontinuous voltage and current signals in electrical drives: a system approach,” IEEE Transactions on Industry Applications, vol. 34, no. 5, pp. 1123–1130, 1998.
[20]  B. P. McGrath and D. G. Holmes, “Multicarrier PWM strategies for multilevel inverters,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 858–867, 2002.
[21]  D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters Principles and Practice, IEEE Series on Power Engineering, 2003.
[22]  C. Osawa, Y. Matsumoto, T. Mizukami, and S. Ozaki, “State-space modeling and a neutral point voltage control for an NPC power converter,” in Proceedings of the 1997 Power Conversion Conference, vol. 1, pp. 225–230, Nagaoka, Japan, August 1997.
[23]  D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 814–822, 2003.
[24]  D. N. Zmood, D. G. Holmes, and G. H. Bode, “Frequency-domain analysis of three-phase linear current regulators,” IEEE Transactions on Industry Applications, vol. 37, no. 2, pp. 601–610, 2001.
[25]  M. Monfared, S. Golestan, and J. M. Guerrero, “Analysis, design, and experimental verification of a synchronous reference frame voltage control for single-phase inverters,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 258–269, 2014.
[26]  A. G. Yepes, A. Vidal, O. Lopez, and J. Doval-Gandoy, “Evaluation of techniques for cross-coupling decoupling between orthogonal axes in double synchronous reference frame current control,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3527–3531, 2014.
[27]  S. H. Song, J. W. Choi, and S. K. Sul, “Current measurements in digitally controlled AC drives,” IEEE Industry Applications Magazine, vol. 6, no. 4, pp. 51–62, 2000.
[28]  S. Bhattacharya and D. Divan, “Synchronous frame based controller implementation for a hybrid series active filter system,” in Proceedings of the Conference Record of the 1995 IEEE Industry Applications, 30th IAS Annual Meeting (IAS '95), vol. 3, pp. 2531–2540, October 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413