全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Image Enhancement under Data-Dependent Multiplicative Gamma Noise

DOI: 10.1155/2014/981932

Full-Text   Cite this paper   Add to My Lib

Abstract:

An edge enhancement filter is proposed for denoising and enhancing images corrupted with data-dependent noise which is observed to follow a Gamma distribution. The filter is equipped with three terms designed to perform three different tasks. The first term is an anisotropic diffusion term which is derived from a locally adaptive p-laplacian functional. The second term is an enhancement term or a shock term which imparts a shock effect at the edge points making them sharp. The third term is a reactive term which is derived based on the maximum a posteriori (MAP) estimator and this term helps the diffusive term to perform a Gamma distributive data-dependent multiplicative noise removal from images. And moreover, this reactive term ensures that deviation of the restored image from the original one is minimum. This proposed filter is compared with the state-of-the-art restoration models proposed for data-dependent multiplicative noise. 1. Introduction Image restoration is an important activity in image processing. Many different kinds of degradation models have been discussed in the recent literature. The degradation due to an additive data independent noise was explored extensively in the image denoising literature; see [1–3] for details. Further the degradations due to the combined effect of random noise and linear shift invariant blur are also studied elaborately; see [4–7] for further details. Another category of degradation that is discussed in the recent literatures is the model with multiplicative data-dependent noise with linear shift-invariant blur. Nevertheless, a solution to data-dependent noise model should practically consider the noise distribution as well [8]. Different noise distributions considered under a multiplicative data-dependent noise set-up include Gamma, Poisson, and Gaussian distributions; refer to [8–10] for further details. 2. PDE Models for Multiplicative Noise A common representation for a multiplicative denoising model, found in the image processing literature (assuming a shift-invariant nature of the linear blurring operator), is where is a linear shift invariant blurring kernel, “ ” denotes a linear convolution operator, and is a multiplicative data-dependent noise. The distribution of the noise intensity varies with reference to the application under consideration. The first kind of model that was proposed for image restoration assuming a Gaussian multiplicative noise was RLO model by Lions et al. in [10]. The diffusion equation for the model is where and are the parameters which control the regularization and the data

References

[1]  P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
[2]  H. Kim, V. R. Calvert, and S. Kim, “Preservation of fine structures in pde-based image denoising,” Advances in Numerical Analysis, vol. 2012, Article ID 750146, 19 pages, 2012.
[3]  X. Li, L. Shao, R. Yan, and Y. Liu, “From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms,” IEEE Transactions on Cybernetics, 2013.
[4]  D. Bertaccini, R. H. Chan, S. Morigi, and F. Sgallari, “An adaptive norm algorithm for image restoration,” Lecture Notes in Computer Science, vol. 6667, pp. 194–205, 2012.
[5]  R. H. Chan, A. Lanza, S. Morigi, and F. Sgallari, “An adaptive strategy for the restoration of textured images using fractional order regularization,” Numerical Mathematics, vol. 6, no. 1, pp. 276–296, 2013.
[6]  L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1–4, pp. 259–268, 1992.
[7]  A. Marquina and S. Osher, “Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal,” SIAM Journal on Scientific Computing, vol. 22, no. 2, pp. 387–405, 2001.
[8]  G. Aubertt and J.-F. Aujol, “A variational approach to removing multiplicative noise,” SIAM Journal on Applied Mathematics, vol. 68, no. 4, pp. 925–946, 2008.
[9]  S. Setzer, G. Steidl, and T. Teuber, “Deblurring Poissonian images by split Bregman techniques,” Journal of Visual Communication and Image Representation, vol. 21, no. 3, pp. 193–199, 2010.
[10]  P. L. Lions, L. I. Rudin, and S. Osher, “Multiplicative denoising and deblurring: theory andalgorithms,” in Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–120, Springer, 2003.
[11]  L. Xiao, L.-L. Huang, and Z.-H. Wei, “Multiplicative noise removal via a novel variational model,” Eurasip Journal on Image and Video Processing, vol. 2010, Article ID 250768, 2010.
[12]  M. K. Ng, M. Huang, and Y. Y. W. Wen, “A new total variation method for multiplicative noise removal,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 22–40, 2009.
[13]  P. Jidesh and A. A. Bini, “A complex diffusion driven approach for removing data-dependent multiplicative noise,” in Proceedings of the Pattern Recognition and Machine Intelligence, vol. 8251 of Lecture Notes in Computer Science, pp. 284–289, 2013.
[14]  P. Jidesh, “A convex regularization model for image restoration,” Computers and Electrical Engineering, 2014.
[15]  S. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock filters,” SIAM Journal on Numerical Analysis, vol. 27, no. 4, pp. 919–940, 1990.
[16]  L. Alvarez and L. Mazorra, “Signal and image restoration using shock filters and anisotropic diffusion,” SIAM Journal on Numerical Analysis, vol. 31, no. 2, pp. 590–605, 1994.
[17]  G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Regularized shock filters and complex diffusion,” in Proceedings of the Computer Vision (ECCV '02), pp. 399–413, 2002.
[18]  P. Jidesh and S. George, “Curvature driven diffusion coupled with shock for image enhancement/reconstruction,” International Journal of Signal and Imaging Systems Engineering, vol. 4, no. 4, pp. 238–247, 2011.
[19]  P. Jidesh and S. George, “Shock coupled fourth-order diffusion for image enhancement,” Computers and Electrical Engineering, vol. 38, no. 5, pp. 1262–1277, 2012.
[20]  P. Blomgren, T. F. Chan, and P. Mulet, “Extensions to total variation denoising,” in Advanced Signal Processing: Algorithms, Architectures and Implementations VII, Proceedings of the SPIE, pp. 367–375, July 1997.
[21]  S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, vol. 79, no. 1, pp. 12–49, 1988.
[22]  W. K. Pratt, Digital Image Processing, Wiley, 4th edition, 2007.
[23]  Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133