全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Imatinib: A Breakthrough of Targeted Therapy in Cancer

DOI: 10.1155/2014/357027

Full-Text   Cite this paper   Add to My Lib

Abstract:

Deregulated protein tyrosine kinase activity is central to the pathogenesis of human cancers. Targeted therapy in the form of selective tyrosine kinase inhibitors (TKIs) has transformed the approach to management of various cancers and represents a therapeutic breakthrough. Imatinib was one of the first cancer therapies to show the potential for such targeted action. Imatinib, an oral targeted therapy, inhibits tyrosine kinases specifically BCR-ABL, c-KIT, and PDGFRA. Apart from its remarkable success in CML and GIST, Imatinib benefits various other tumors caused by Imatinib-specific abnormalities of PDGFR and c-KIT. Imatinib has also been proven to be effective in steroid-refractory chronic graft-versus-host disease because of its anti-PDGFR action. This paper is a comprehensive review of the role of Imatinib in oncology. 1. Introduction Imatinib (also known as “Gleevec” or “Glivec”), a tyrosine kinase inhibitor, was called as “magical bullet,” when it revolutionized the treatment of chronic myeloid leukemia (CML) in 2001. Imatinib was invented in the late 1990s by biochemist Nicholas Lyndon then working for Ciba-Geigy (now Novartis), and its use to treat CML was driven by Brian Druker, an oncologist at the Dana-Farber Institute. The first clinical trial of Imatinib took place in 1998 and the drug received FDA approval in May 2001. Lyndon, Druker, and the other colleagues were awarded the Lasker-DeBakey Clinical Medical Research Award in 2009 for “converting a fatal cancer into a manageable condition” and the Japan Prize in 2012 for their part in “the development of a new therapeutic drug targeting cancer-specific molecules.” Encouraged by the success of Imatinib in treating CML patients, scientists explored its effect in other cancers and it was found to produce a similar miracle effect in other cancers where tyrosine kinases were overexpressed. This review discusses the clinical implications of Imatinib in various cancers. 2. Clinical Pharmacology Tyrosine kinases are important mediators of the signaling cascade, determining key roles in diverse biological processes like growth, differentiation, metabolism, and apoptosis in response to external and internal stimuli. Deregulation of protein kinase activity has been shown to play a central role in the pathogenesis of human cancers. Imatinib, a 2-phenyl amino pyrimidine derivative, is a tyrosine kinase inhibitor with activity against ABL, BCR-ABL, PDGFRA, and c-KIT. The active sites of tyrosine kinases each have a binding site for ATP. The enzymatic activity catalyzed by a tyrosine kinase is the

References

[1]  C. H. Takimoto and E. Calvo, “Principles of oncological pharmacotherapy,” in Cancer Management: A Multidisciplinary Approach, R. Pazdur, L. D. Wagman, K. A. Camphausen, and W. J. Hoskins, Eds., 11th edition, 2008.
[2]  M. W. Deininger and B. J. Druker, “Specific targeted therapy of chronic myelogenous leukemia with imatinib,” Pharmacological Reviews, vol. 55, no. 3, pp. 401–423, 2003.
[3]  P. Vigneri and J. Y. Wang, “Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase,” Nature Medicine, vol. 7, no. 2, pp. 228–234, 2001.
[4]  B. Peng, C. Dutreix, G. Mehring et al., “Absolute bioavailability of Imatinib (Glivec?) orally versus intravenous infusion,” Journal of Clinical Pharmacology, vol. 44, no. 2, pp. 158–162, 2004.
[5]  B. Peng, P. Lloyd, and H. Schran, “Clinical pharmacokinetics of imatinib,” Clinical Pharmacokinetics, vol. 44, no. 9, pp. 879–894, 2005.
[6]  M. L. Hensley and J. M. Ford, “Imatinib treatment: specific issues related to safety, fertility, and pregnancy,” Seminars in Hematology, vol. 40, no. 2, pp. 21–25, 2003.
[7]  J. D. Rowley, “A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining,” Nature, vol. 243, no. 5405, pp. 290–293, 1973.
[8]  T. G. Lugo, A.-M. Pendergast, A. J. Muller, and O. N. Witte, “Tyrosine kinase activity and transformation potency of bcr-abl oncogene products,” Science, vol. 247, no. 4946, pp. 1079–1082, 1990.
[9]  B. J. Druker, S. Tamura, E. Buchdunger, et al., “Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of BCR-ABL—positive cells,” Nature Medicine, vol. 2, pp. 561–566, 1996.
[10]  B. J. Druker, C. L. Sawyers, H. Kantarjian et al., “Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome,” New England Journal of Medicine, vol. 344, no. 14, pp. 1038–1042, 2001.
[11]  B. J. Druker, M. Talpaz, D. J. Resta et al., “Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia,” New England Journal of Medicine, vol. 344, no. 14, pp. 1031–1037, 2001.
[12]  S. G. O'Brien, F. Guilhot, R. A. Larson et al., “Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia,” New England Journal of Medicine, vol. 348, no. 11, pp. 994–1004, 2003.
[13]  E. A. Hahn, G. A. Glendenning, M. V. Sorensen et al., “Quality of life in patients with newly diagnosed chronic phase chronic myeloid leukemia on imatinib versus interferon alfa plus low-dose cytarabine: results from the IRIS study,” Journal of Clinical Oncology, vol. 21, no. 11, pp. 2138–2146, 2003.
[14]  B. J. Druker, F. Guilhot, S. G. O'Brien, et al., “Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia,” The New England Journal of Medicine, vol. 355, pp. 2408–2417, 2006.
[15]  C. L. Sawyers, A. Hochhaus, E. Feldman et al., “Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study,” Blood, vol. 99, no. 10, pp. 3530–3539, 2002.
[16]  M. Talpaz, R. T. Silver, B. J. Druker et al., “Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study,” Blood, vol. 99, no. 6, pp. 1928–1937, 2002.
[17]  S. Branford and T. Hughes, “Detection of BCR-ABL mutations and resistance to imatinib mesylate,” Methods in Molecular Medicine, vol. 125, pp. 93–106, 2006.
[18]  E. Jabbour, H. Kantarjian, D. Jones et al., “Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate,” Leukemia, vol. 20, no. 10, pp. 1767–1773, 2006.
[19]  E. Jabbour, H. M. Kantarjian, D. Jones et al., “Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy,” Blood, vol. 113, no. 10, pp. 2154–2160, 2009.
[20]  E. Jabbour, J. E. Cortes, H. Ghanem, S. O'Brien, and H. M. Kantarjian, “Targeted therapy in chronic myeloid leukemia,” Expert Review of Anticancer Therapy, vol. 8, no. 1, pp. 99–110, 2008.
[21]  G. Saglio, D. Kim, S. Issaragrisil et al., “Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia,” New England Journal of Medicine, vol. 362, no. 24, pp. 2251–2259, 2010.
[22]  H. Kantarjian, N. P. Shah, A. Hochhaus et al., “Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia,” New England Journal of Medicine, vol. 362, no. 24, pp. 2260–2270, 2010.
[23]  H. J. Kang, K. H. Koh, E. Yang et al., “Differentially expressed proteins in gastrointestinal stromal tumors with KIT and PDGFRA mutations,” Proteomics, vol. 6, no. 4, pp. 1151–1157, 2006.
[24]  F. Medeiros, C. L. Corless, A. Duensing et al., “KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications,” American Journal of Surgical Pathology, vol. 28, no. 7, pp. 889–894, 2004.
[25]  G. D. Demetri, M. Von Mehren, C. D. Blanke et al., “Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors,” New England Journal of Medicine, vol. 347, no. 7, pp. 472–480, 2002.
[26]  C. D. Blanke, G. D. Demetri, M. Von Mehren et al., “Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT,” Journal of Clinical Oncology, vol. 26, no. 4, pp. 620–625, 2008.
[27]  J. Verweij, A. Van Oosterom, J.-Y. Blay et al., “Imatinib mesylate (STI-571 Glivec?, Gleevec?) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target: results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study,” European Journal of Cancer, vol. 39, no. 14, pp. 2006–2011, 2003.
[28]  C. D. Blanke, C. Rankin, G. D. Demetri et al., “Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033,” Journal of Clinical Oncology, vol. 26, no. 4, pp. 626–632, 2008.
[29]  J. Verweij, P. G. Casali, J. Zalcberg et al., “Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial,” The Lancet, vol. 364, no. 9440, pp. 1127–1134, 2004.
[30]  J. Y. Blay, C. A. Le, I. Ray-Coquard et al., “Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: the French sarcoma group,” Journal of Clinical Oncology, vol. 25, no. 9, pp. 1107–1113, 2007.
[31]  M. Debiec-Rychter, R. Sciot, A. Le Cesne et al., “KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours,” European Journal of Cancer, vol. 42, no. 8, pp. 1093–1103, 2006.
[32]  H. Joensuu, “Adjuvant therapy for high-risk gastrointestinal stromal tumour: considerations for optimal management,” Drugs, vol. 72, no. 15, pp. 1953–1963, 2012.
[33]  P. Reichardt, J.-Y. Blay, I. Boukovinas, et al., “Adjuvant therapy in primary GIST: state-of-the-art,” Annals of Oncology, vol. 23, no. 11, pp. 2776–2278, 2012.
[34]  R. P. DeMatteo, K. V. Ballman, C. R. Antonescu et al., “Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial,” The Lancet, vol. 373, no. 9669, pp. 1097–1104, 2009.
[35]  P. Casali, A. Le Cesne, A. P. Velasco, et al., “Imatinib failure-free survival (IFS) in patients with localized gastrointestinal stromal tumors (GIST) treated with adjuvant imatinib (IM): the EORTC/AGITG/FSG/GEIS/ISG randomized controlled phase III trial,” Journal of Clinical Oncology, vol. 31, 2013.
[36]  H. Joensuu, M. Eriksson, K. S. Hall et al., “One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial,” Journal of the American Medical Association, vol. 307, no. 12, pp. 1265–1272, 2012.
[37]  M. Van Glabbeke, J. Verweij, P. G. Casali et al., “Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors are predicted by different prognostic factors: a European Organisation for Research and Treatment of Cancer-Italian Sarcoma Group-Australasian Gastrointestinal Trials Group Study,” Journal of Clinical Oncology, vol. 23, no. 24, pp. 5795–5804, 2005.
[38]  M. C. Heinrich, C. L. Corless, C. D. Blanke et al., “Molecular correlates of imatinib resistance in gastrointestinal stromal tumors,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4764–4774, 2006.
[39]  J. Desai, S. Shankar, M. C. Heinrich et al., “Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors,” Clinical Cancer Research, vol. 13, no. 18, pp. 5398–5405, 2007.
[40]  F. C. Miselli, P. Casieri, T. Negri et al., “c-Kit/PDGFRA gene status alterations possibly related to primary imatinib resistance in gastrointestinal stromal tumors,” Clinical Cancer Research, vol. 13, no. 8, pp. 2369–2377, 2007.
[41]  K. Eechoute, A. Sparreboom, H. Burger et al., “Drug transporters and imatinib treatment: implications for clinical practice,” Clinical Cancer Research, vol. 17, no. 3, pp. 406–415, 2011.
[42]  J. R. Zalcberg, J. Verweij, P. G. Casali et al., “Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg,” European Journal of Cancer, vol. 41, no. 12, pp. 1751–1757, 2005.
[43]  G. D. Demetri, M. C. Heinrich, J. A. Fletcher et al., “Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure,” Clinical Cancer Research, vol. 15, no. 18, pp. 5902–5909, 2009.
[44]  P. Reichardt, J. Y. Blay, H. Gelderblom, et al., “Phase III study of nilotinib versus best supportive care with or without a TKI in patients with gastrointestinal stromal tumors resistant to or intolerant of imatinib and sunitinib,” Annals of Oncology, vol. 23, no. 7, pp. 1680–1687, 2012.
[45]  W. B. Laskin, “Dermatofibrosarcoma protuberans,” Ca-A Cancer Journal for Clinicians, vol. 42, no. 2, pp. 116–125, 1992.
[46]  M. P. Simon, M. Navarro, D. Roux, et al., “Transforming properties of chimerical protein COL1A1-PDGFB generated by dermatofibrosarcoma protuberans-associated translocation t(17,22)(q22,q13.1),” Cancer Genetics and Cytogenetics, vol. 128, p. 82, 2001.
[47]  A. Greco, E. Roccato, C. Miranda, L. Cleris, F. Formelli, and M. A. Pierotti, “Growth-inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement,” International Journal of Cancer, vol. 92, no. 3, pp. 354–360, 2001.
[48]  K. Mizutani, Y. Tamada, K. Hara et al., “Imatinib mesylate inhibits the growth of metastatic lung lesions in a patient with dermatofibrosarcoma protuberans,” British Journal of Dermatology, vol. 151, no. 1, pp. 235–237, 2004.
[49]  S. V. Labropoulos, J. A. Fletcher, A. M. Oliveira, S. Papadopoulos, and E. D. Razis, “Sustained complete remission of metastatic dermatofibrosarcoma protuberans with imatinib mesylate,” Anti-Cancer Drugs, vol. 16, no. 4, pp. 461–466, 2005.
[50]  G. A. McArthur, G. D. Demetri, A. Van Oosterom et al., “Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: imatinib target exploration consortium study B2225,” Journal of Clinical Oncology, vol. 23, no. 4, pp. 866–873, 2005.
[51]  V. E. Price, J. A. Fletcher, M. Zielenska et al., “Imatinib mesylate: an attractive alternative in young children with large, surgically challenging dermatofibrosarcoma protuberans,” Pediatric Blood and Cancer, vol. 44, no. 5, pp. 511–515, 2005.
[52]  A. Han, E. H. Chen, G. Niedt, W. Sherman, and D. Ratner, “Neoadjuvant imatinib therapy for dermatofibrosarcoma protuberans,” Archives of Dermatology, vol. 145, no. 7, pp. 792–796, 2009.
[53]  D. Kérob, R. Porcher, O. Vérola et al., “Imatinib mesylate as a preoperative therapy in dermatofibrosarcoma: results of a multicenter phase II study on 25 patients,” Clinical Cancer Research, vol. 16, no. 12, pp. 3288–3295, 2010.
[54]  D. A. Thomas, “Philadelphia chromosome positive acute lymphocytic leukemia: a new era of challenges,” Hematology, pp. 435–443, 2007.
[55]  B. Wassmann, H. Pfeifer, N. Goekbuget et al., “Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL),” Blood, vol. 108, no. 5, pp. 1469–1477, 2006.
[56]  H. Pfeifer, N. Goekbuget, C. V?lp, et al., “Long-term outcome of 335 adult patients receiving different schedules of imatinib and chemotherapy as front-line treatment for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL),” Blood, vol. 116, 2010, abstract 173.
[57]  A. K. Fielding, J. M. Rowe, G. Buck, et al., “UKALLXII/ECOG2993:addition of Imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Imatinib significantly enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia,” Blood, vol. 123, no. 6, pp. 843–850, 2014.
[58]  A. Tefferi, J. Gotlib, and A. Pardanani, “Hypereosinophilic syndrome and clonal eosinophilia:point-of-care diagnostic algorithm and treatment update,” Mayo Clinic Proceedings, vol. 85, no. 2, pp. 158–164, 2010.
[59]  B. Bain, R. Pierre, M. Imbert, et al., “Chronic eosinophilic leukaemia and the hypereosinophilic syndrome,” in World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, E. S. Jaffe, N. L. Harris, H. Stein, and J. W. Vardiman, Eds., pp. 29–31, IARC Press, Lyon, France, 2001.
[60]  A. Pardanani and A. Tefferi, “Imatinib targets other than bcr/abl and their clinical relevance in myeloid disorders,” Blood, vol. 104, no. 7, pp. 1931–1939, 2004.
[61]  J. Cools, D. J. DeAngelo, J. Gotlib et al., “A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome,” New England Journal of Medicine, vol. 348, no. 13, pp. 1201–1214, 2003.
[62]  A. Tefferi, M. M. Patnaik, and A. Pardanani, “Eosinophilia: secondary, clonal and idiopathic,” British Journal of Haematology, vol. 133, no. 5, pp. 468–492, 2006.
[63]  J. V. Jovanovic, J. Score, K. Waghorn et al., “Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia,” Blood, vol. 109, no. 11, pp. 4635–4640, 2007.
[64]  A. Pardanani, R. P. Ketterling, C.-Y. Li et al., “FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature,” Leukemia Research, vol. 30, no. 8, pp. 965–970, 2006.
[65]  G. Metzgeroth, H. Popp, C. Walz, et al., “A phase-II-study to evaluate efficacy and safety of imatinib in eosinophilia-associated myeloproliferative disorders and idiopathic hypereosinophilic syndrome,” Blood, vol. 108, 2006, abstract 671.
[66]  P. Valent, H. Horny, L. Escribano et al., “Diagnostic criteria and classification of mastocytosis: a consensus proposal,” Leukemia Research, vol. 25, no. 7, pp. 603–625, 2001.
[67]  A. Pardanani, C. Akin, and P. Valent, “Pathogenesis, clinical features, and treatment advances in mastocytosis,” Best Practice and Research: Clinical Haematology, vol. 19, no. 3, pp. 595–615, 2006.
[68]  A. Vega-Ruiz, J. E. Cortes, M. Sever et al., “Phase II study of imatinib mesylate as therapy for patients with systemic mastocytosis,” Leukemia Research, vol. 33, no. 11, pp. 1481–1484, 2009.
[69]  L. Pagano, C. G. Valentini, M. Caira et al., “Advanced mast cell disease: an Italian Hematological Multicenter experience,” International Journal of Hematology, vol. 88, no. 5, pp. 483–488, 2009.
[70]  A. Pardanani, M. Elliott, T. Reeder et al., “Imatinib for systemic mast-cell disease,” The Lancet, vol. 362, no. 9383, pp. 535–537, 2003.
[71]  A. Verzijl, R. Heide, A. P. Oranje, and R. H. N. Van Schaik, “C-kit Asp-816-Val mutation analysis in patients with mastocytosis,” Dermatology, vol. 214, no. 1, pp. 15–20, 2006.
[72]  M. C. Heinrich, H. Joensuu, G. D. Demetri et al., “Phase II, open-label study evaluating the activity of imatinib in treating life-threatening malignancies known to be associated with imatinib- sensitivetyrosine kinases,” Clinical Cancer Research, vol. 14, no. 9, pp. 2717–2725, 2008.
[73]  D. Lev, D. Kotilingam, C. Wei et al., “Optimizing treatment of desmoid tumors,” Journal of Clinical Oncology, vol. 25, no. 13, pp. 1785–1791, 2007.
[74]  M. El-Haddad, M. El-Sebaie, R. Ahmad et al., “Treatment of aggressive fibromatosis: the experience of a single institution,” Clinical Oncology, vol. 21, no. 10, pp. 775–780, 2009.
[75]  J. Mace, J. Sybil Biermann, V. Sondak et al., “Response of extraabdominal desmoid tumors to therapy with imatinib mesylate,” Cancer, vol. 95, no. 11, pp. 2373–2379, 2002.
[76]  R. Chugh, J. K. Wathen, S. R. Patel et al., “Efficacy of imatinib in aggressive fibromatosis: results of a phase II multicenter Sarcoma Alliance for Research through Collaboration (SARC) trial,” Clinical Cancer Research, vol. 16, no. 19, pp. 4884–4891, 2010.
[77]  N. Penel, A. Le Cesne, B. N. Bui et al., “Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up,” Annals of Oncology, vol. 22, no. 2, pp. 452–457, 2011.
[78]  J. A. Curtin, K. Busam, D. Pinkel, and B. C. Bastian, “Somatic activation of KIT in distinct subtypes of melanoma,” Journal of Clinical Oncology, vol. 24, no. 26, pp. 4340–4346, 2006.
[79]  C. R. Antonescu, K. J. Busam, T. D. Francone et al., “L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition,” International Journal of Cancer, vol. 121, no. 2, pp. 257–264, 2007.
[80]  R. D. Carvajal, C. R. Antonescu, J. D. Wolchok et al., “KIT as a therapeutic target in metastatic melanoma,” Journal of the American Medical Association, vol. 305, no. 22, pp. 2327–2334, 2011.
[81]  F. S. Hodi, C. L. Corless, A. Giobbie-Hurder, et al., “Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin,” Journal of Clinical Oncology, vol. 31, no. 26, pp. 3182–3190, 2013.
[82]  R. D. Carvajal, “Another option in our KIT of effective therapies for advanced melanoma,” Journal of Clinical Oncology, vol. 31, no. 26, pp. 3173–3175, 2013.
[83]  B. J. Dezube, “Clinical presentation and natural history of AIDS—related Kaposi's sarcoma,” Hematology/Oncology Clinics of North America, vol. 10, no. 5, pp. 1023–1029, 1996.
[84]  A. M. Cattelan, M. L. Calabrò, A. De Rossi et al., “Long-term clinical outcome of AIDS-related Kaposi's sarcoma during highly active antiretroviral therapy,” International Journal of Oncology, vol. 27, no. 3, pp. 779–785, 2005.
[85]  H. B. Koon, S. E. Krown, J. Y. Lee, et al., “Phase II Trial of Imatinib in AIDS-Associated Kaposi's Sarcoma: AIDS Malignancy Consortium Protocol 042,” Journal of Clinical Oncology, vol. 32, no. 5, pp. 402–408, 2014.
[86]  N. L. Higinbotham, R. F. Phillips, H. W. Farr, and H. O. Hustu, “Chordoma. Thirty-five-year study at Memorial Hospital,” Cancer, vol. 20, no. 11, pp. 1841–1850, 1967.
[87]  P. G. Casali, S. Stacchiotti, C. Sangalli, P. Olmi, and A. Gronchi, “Chordoma,” Current Opinion in Oncology, vol. 19, no. 4, pp. 367–370, 2007.
[88]  S. Stacchiotti, A. Longhi, V. Ferraresi et al., “Phase II study of imatinib in advanced chordoma,” Journal of Clinical Oncology, vol. 30, no. 9, pp. 914–920, 2012.
[89]  T. J. Herzog and B. Pothuri, “Ovarian cancer: a focus on management of recurrent disease,” Nature Clinical Practice Oncology, vol. 3, no. 11, pp. 604–611, 2006.
[90]  S. M. Apte, D. Fan, J. J. Killion, and I. J. Fidler, “Targeting the Platelet-Derived Growth Factor Receptor in Antivascular Therapy for Human Ovarian Carcinoma,” Clinical Cancer Research, vol. 10, no. 3, pp. 897–908, 2004.
[91]  D. S. Alberts, P. Y. Liu, S. P. Wilczynski et al., “Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211),” International Journal of Gynecological Cancer, vol. 17, no. 4, pp. 784–788, 2007.
[92]  E. M. Posadas, V. Kwitkowski, H. L. Kotz et al., “A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling,” Cancer, vol. 110, no. 2, pp. 309–317, 2007.
[93]  T. Safra, E. Andreopoulou, B. Levinson et al., “Weekly paclitaxel with intermittent imatinib mesylate (Gleevec?): tolerance and activity in recurrent epithelial ovarian cancer,” Anticancer Research, vol. 30, no. 9, pp. 3243–3247, 2010.
[94]  A. Podtcheko, A. Ohtsuru, S. Tsuda et al., “The selective tyrosine kinase inhibitor, STI571, inhibits growth of anaplastic thyroid cancer cells,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1889–1896, 2003.
[95]  H. T. Ha, J. S. Lee, S. Urba et al., “A phase II study of imatinib in patients with advanced anaplastic thyroid cancer,” Thyroid, vol. 20, no. 9, pp. 975–980, 2010.
[96]  D. Wolff, M. Schleuning, S. von Harsdorf et al., “Consensus conference on clinical practice in chronic GVHD: second-line treatment of chronic graft-versus-host disease,” Biology of Blood and Marrow Transplantation, vol. 17, no. 1, pp. 1–17, 2011.
[97]  J. Olivieri, S. Coluzzi, I. Attolico, and A. Olivieri, “Tirosin kinase inhibitors in chronic graft versus host disease: from bench to bedside,” TheScientificWorldJournal, vol. 11, pp. 1908–1931, 2011.
[98]  R. Seggewiss, K. Loré, E. Greiner et al., “Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner,” Blood, vol. 105, no. 6, pp. 2473–2479, 2005.
[99]  A. Olivieri, M. Cimminiello, P. Corradini, et al., “Long-term outcome and prospective validation of NIH response criteria in 39 patients receiving imatinib for steroid-refractory chronic GVHD,” Blood, vol. 122, no. 25, pp. 4111–4118, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413