全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PLLA/Fibrin Tubular Scaffold: A New Way for Reliable Endothelial Cell Seeding

DOI: 10.1155/2014/147858

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work a simple and quick technique for cell seeding into tubular-shaped scaffolds, which allows a homogeneous cell distribution, was tested. The poly-L-lactide (PLLA) scaffolds, prepared via diffusion induced phase separation (DIPS), were filled with fibrin gel in order to obtain a hybrid scaffold for Vascular Tissue Engineering applications. The formation of immobilized fibrin networks on the inner surface of the tubular scaffolds was observed using confocal microscopy and SEM. Morphological analysis of the so-obtained scaffold revealed that the fibrin gel is uniformly distributed on the internal surface of the scaffold, leading to an organized structure. Moreover a penetration of the gel into the porous wall of the scaffold was observed. The in vitro endothelial cell cultures carried out in the scaffolds highlighted a faster cell proliferation inside the hybrid scaffold with respect to simple PLLA scaffold. Results show that the fibrin/PLLA hybrid scaffold may be favourably used for Vascular Tissue Engineering applications. 1. Introduction Cardiovascular disease remains the leading cause of mortality in western nations, with an estimated prevalence of almost 80 million in the USA alone. In particular, coronary artery disease is the leading cause of death, accounting for 53% of the total mortality related to cardiovascular disease [1]. Tissue engineering approaches are being investigated as potential solutions to these problems. Adhesion of tissue cells to biomaterials is a prerequisite of paramount importance for the successful incorporation of vascular implants or the colonization of scaffolds in tissue engineering applications [2]. As a matter of fact, cell adhesion plays a critical role in the normal function of mammalian cells by regulating proliferation, differentiation, and phenotypic behaviour. Initial efforts to design biomaterials have focused on achieving robust mechanical interactions between the biomaterial and adjacent cells (i.e., integration). However, evidence is emerging that cell/biomaterial interactions can affect cell/cell interactions and consequently impact tissue development and functions. Therefore, successful outcomes of tissue engineering efforts may require the development of materials that can promote and facilitate both cell/cell and cell/biomaterial adhesion [3]. Synthetic biomaterials in vascular applications, such as PLLA, poly-lactic-glycolic acid (PLGA), and -polycaprolattone (PCL), are easily modified, highly reproducible, and can be synthesized in bulk. However, synthetic polymers alone lack specific

References

[1]  L. Soletti, Y. Hong, J. Guan et al., “A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts,” Acta Biomaterialia, vol. 6, no. 1, pp. 110–122, 2010.
[2]  N. Faucheux, R. Schweiss, K. Lützow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials, vol. 25, no. 14, pp. 2721–2730, 2004.
[3]  A. S. Goldstein, “Cell Adhesion,” in Tissue Engineering and Artificial Organs, J. Bronzino, Ed., Chapter 34, pp. 1–18, 2006.
[4]  F. Carfi' Pavia, V. La Carrubba, G. Ghersi, and V. Brucato, “Poly-left-lactic acid tubular scaffolds via diffusion induced phase separation: control of morphology,” Polymer Engineering and Science, vol. 53, pp. 431–442, 2013.
[5]  K. Shimizu, A. Ito, M. Arinobe et al., “Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering,” Journal of Bioscience and Bioengineering, vol. 103, no. 5, pp. 472–478, 2007.
[6]  P. A. Janmey, J. P. Winer, and J. W. Weisel, “Fibrin gels and their clinical and bioengineering applications,” Journal of the Royal Society Interface, vol. 6, no. 30, pp. 1–10, 2009.
[7]  N. Laurens, P. Koolwijk, and M. P. de Maat, “Fibrin structure and wound healing,” Journal of Thrombosis and Haemostasis, vol. 4, no. 5, pp. 932–939, 2006.
[8]  A. Lesman, J. Koffler, R. Atlas, Y. J. Blinder, Z. Kam, and S. Levenberg, “Engineering vessel-like networks within multicellular fibrin-based constructs,” Biomaterials, vol. 32, no. 31, pp. 7856–7869, 2011.
[9]  V. W. M. Van Hinsbergh, A. Collen, and P. Koolwijk, “Role of fibrin matrix in angiogenesis,” Annals of the New York Academy of Sciences, vol. 936, pp. 426–437, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413