全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Simple Method to Stabilize Radiation Pattern over a Large Bandwidth

DOI: 10.1155/2014/712735

Full-Text   Cite this paper   Add to My Lib

Abstract:

An alternative radiation stabilization method has been presented for patch antenna. With this method, side radiation could be suppressed when a conductor ring and a circular slot both with the width of a quarter-wavelength are placed on the same layer and around patch antenna. An experimental structure has been simulated and the distance from antenna part to conductor ring is optimized using parametric function of HFSS software. Measured results given in this paper obviously indicate that not only the side radiation from the boundary of substrate could be suppressed effectively, but also the antenna directivity could be adjusted and enhanced after this method has been carried out. Both simulation and measurement indicate that when the distance is set to one guided wavelength ( ), side radiation could be suppressed the most effectively and the return loss of patch antenna is only slightly affected. 1. Introduction To meet the needs of designing a planar, wideband and dual-polarized antenna array for the reception of direct-broadcast satellite (DBS) system, a patch antenna which is composed of 7 patches arranged in a cross-shape, has been studied in [1] as the element of big array. After optimizing the size of patches and the width of gaps of cross antenna, the relative bandwidth reaches up to 38% with respect to the central frequency (band is from 10 to 14.7?GHz). But according to the radiation patterns shown in [1], the cross antenna has a disturbed omnidirectional pattern in the front side and its main beam is also steered due to the unsymmetrical structure. As an omnidirectional and stable radiation in front side is expected over all the bandwidth, a solution to correct these disturbances is required. The idea of using metamaterial to improve antenna directivity has been proposed in [2–4]. In [2] Turpin et al. have constructed a metalens for crossed-dipole feed antenna and the measured directivity was reported to have increased more than 6?dB. In [3, 4], two types of metamaterial structures composed of copper grids with lattices are introduced for patch antenna; not only directivity but also the front-to-back ratio is greatly increased as reported in their studies. But according to their methods, the metalens is a nonplanar structure which looks like a wall, and the copper grids methods are not suitable for broadband applications due to the relative narrow band of metamaterial structure. Reference [5] provides us with a single element antenna which uses freeformed cylindrical woodpile cavity; very good SLL (sidelobe level), narrow beam, and good

References

[1]  Z. Haiyang, M. Yann, and R. Tchanguiz, “A novel wideband and dual-polarized cross-antenna for satellite communications,” in Proceedings of the Progress in Electromagnetics Research Symposium, pp. 1425–1428, Stockholm, Sweden, August 2013.
[2]  J. P. Turpin, Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, “Low cost and broadband dual-polarization metamaterial lens for directivity enhancement,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5717–5726, 2012.
[3]  Z.-B. Weng, N.-B. Wang, Y.-C. Jiao, and F.-S. Zhang, “A directive patch antenna with metamaterial structure,” Microwave and Optical Technology Letters, vol. 49, no. 2, pp. 456–459, 2007.
[4]  Z. Fangming, L. Qingchun, and H. Jun, “A directive patch antenna with a metamaterial cover,” in Proceedings of the Asia-Pacific Microwave Conference (APMC '05), vol. 3, December 2005.
[5]  Y. Lee, X. Lu, Y. Hao, S. Yang, J. R. G. Evans, and C. G. Parini, “Narrow-beam azimuthally omni-directional millimetre-wave antenna using freeformed cylindrical woodpile cavity,” IET Microwaves, Antennas and Propagation, vol. 4, no. 10, pp. 1491–1499, 2010.
[6]  Y. Lee, X. Lu, Y. Hao, et al., “Rapid prototyping of ceramic millimetre-wave metamaterials: simulations and experiments,” Microwave and Optical Technology Letters, vol. 29, no. 9, pp. 2090–2093, 2007.
[7]  X. Lu, Y. Lee, S. Yang et al., “Fabrication of electromagnetic crystals by extrusion freeforming,” Metamaterials, vol. 2, no. 1, pp. 36–44, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133