全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optical and Structural Properties of ZnO Nanoparticles Synthesized by CO2 Microwave Plasma at Atmospheric Pressure

DOI: 10.1155/2014/734256

Full-Text   Cite this paper   Add to My Lib

Abstract:

The results of carbon-doped zinc oxide nanoparticles synthesized by CO2 microwave plasma at atmospheric pressure are presented. The 2.45-GHz microwave plasma torch and feeder for injecting Zn granules are used in the synthesis of zinc oxide nanoparticles. The Zn granules (13.5?g/min) were introduced into the microwave plasma by CO2 (5?l/min) swirl gas. The microwave power delivered to the CO2 microwave plasma was 1?kW. The synthesis of carbon-doped zinc oxide nanoparticles was carried out in accordance with CO2?+?Zn?→?carbon-doped ZnO?+?CO. The synthesized carbon-doped zinc oxide nanoparticles have a high purity hexagonal phase. The absorption edge of carbon-doped zinc oxide nanoparticles exhibited a red shift from a high-energy wavelength to lower in the UV-visible spectrum, due to band gap narrowing. A UV-NIR spectrometer, X-ray diffraction, emission scanning electron-microscopy, energy dispersive X-ray microanalysis, Fourier transform infrared spectroscopy, and a UV-Vis-NIR spectrophotometer were used for the characterization of the as-produced products. 1. Introduction CO2 has been verified as a significant factor in the increase of the greenhouse effect. The decomposition and extinction of CO2 are very important to environmental factors. Recently, CO2 capture and storage (CCS) [1, 2], CO2 capture and utilization (CCU) [3], and CO2 reforming of CH4 [4] are being used as technology for recycling CO2. CCU is among the more promising of these technologies being deployed. In order to utilize the oxygen in CO2 as an oxidant, the synthesis method of carbon-doped zinc oxide nanoparticles (C-doped ZnO-NPs) using a CO2 microwave plasma torch has been designed. The developed CO2 microwave plasma torch operated at atmospheric pressure seems to have demonstrated high potential for the synthesis of C-doped ZnO. The UV near-band edge emission of pure ZnO catalyst is detected in approximately 380?nm (~3.2?eV). Therefore, a band gap of Pure ZnO does not allow the capture of most of the solar light energy [5]. Only a small portion (UV energy) of the solar spectrum is absorbed. Consequently, a major issue of ZnO catalyst production is the need to increase the efficiency of photo-activity by band gap narrowing. The band gap narrowing of photo-catalyst is obtained by the inclusion of transition metals (V, Cr, Mn, and Fe) or main group atoms (N, C, S, and F). As a typical example, impurities such as transition metals, nitrogen, sulphur, and carbon can be doped in oxygen vacancy or the lattice of a ZnO catalyst using one of several synthesis ways. Various transition

References

[1]  H. H. Lamb, Climate: Present, Past and Future: Fundamentals and Climate Now, vol. 1, Methuen, London, UK, 1972.
[2]  P. Riemer, “Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse gas R&D programme,” Energy Conversion and Management, vol. 37, no. 6–8, pp. 665–670, 1996.
[3]  K. M. K. Yu, I. Curcic, J. Gabriel, and S. C. E. Tsang, “Recent advances in CO2 capture and utilization,” ChemSusChem, vol. 1, no. 11, pp. 893–899, 2008.
[4]  M. C. J. Bradford and M. A. Vannice, “CO2 reforming of CH4,” Catalysis Reviews—Science and Engineering, vol. 41, no. 1, pp. 1–42, 1999.
[5]  C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Preparation and characterization of quatum-size titanium dioxide,” Journal of Physical Chemistry, vol. 92, no. 18, pp. 5196–5201, 1988.
[6]  Y. C. Hong, T. Lho, B. J. Lee, H. S. Uhm, O. Kwon, and S. H. Lee, “Synthesis of titanium dioxide in O2/Ar/SO2/TiCl4 microwave torch plasma and its band gap narrowing,” Current Applied Physics, vol. 11, no. 3, pp. 517–520, 2011.
[7]  Y. C. Hong, T. H. Lho, D. H. Shin, and H. S. Uhm, “Removal of fluorinated compound gases by an enhanced methane microwave plasma burner,” Japanese Journal of Applied Physics, vol. 49, no. 1R, Article ID 017101, 2010.
[8]  H. S. Uhm, Y. C. Hong, D. H. Shin, and B. J. Lee, “Plasma-enhanced gasification of low-grade coals for compact power plants,” Physics of Plasmas, vol. 18, no. 10, Article ID 104505, 2011.
[9]  K. M. Green, M. Cristina Borrás, P. P. Woskov, G. J. Flores III, K. Hadidi, and P. Thomas, “Electronic excitation temperature profiles in an air microwave plasma torch,” IEEE Transactions on Plasma Science, vol. 29, no. 2, pp. 399–406, 2001.
[10]  H. S. Uhm, Y. C. Hong, and D. H. Shin, “A microwave plasma torch and its applications,” Plasma Sources Science and Technology, vol. 15, no. 2, pp. S26–S34, 2006.
[11]  M. Jasiński, M. Dors, and J. Mizeraczyk, “Production of hydrogen via methane reforming using atmospheric pressure microwave plasma source with CO2 swirl,” International Journal of Engineering Science and Technology, vol. 2, no. 2, pp. 134–139, 2008.
[12]  X. L. Hu, Y. J. Zhu, and S. W. Wang, “Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods,” Materials Chemistry and Physics, vol. 88, no. 2-3, pp. 421–426, 2004.
[13]  R. Jenkins and S. L. Snyder, “Introduction to X-ray powder diffractometry,” J. K. Winefordner, Ed., p. 89, John Wiley & Sons, New York, NY, USA, 1996.
[14]  K. S. Lee, S. H. Nam, H. O. Seo, Y. D. Kim, and J. H. Boo, “Surface property change of C doped TiO2 nano-pillars by O2 plasma treatment,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 12, pp. 10599–10603, 2011.
[15]  Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” Journal of Applied Physics, vol. 88, no. 1, pp. 201–204, 2000.
[16]  Y. Chen, S. K. Hong, H. J. Ko, M. Nakajima, T. Yao, and Y. Segawa, “Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates,” Applied Physics Letters, vol. 76, no. 2, pp. 245–247, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133