全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Emission Spectral Control of a Silicon Light Emitting Diode Fabricated by Dressed-Photon-Phonon Assisted Annealing Using a Short Pulse Pair

DOI: 10.1155/2014/958327

Full-Text   Cite this paper   Add to My Lib

Abstract:

We fabricated a high-efficiency infrared light emitting diode (LED) via dressed-photon-phonon (DPP) assisted annealing of a p-n homojunctioned bulk Si crystal. The center wavelength in the electroluminescence (EL) spectrum of this LED was determined by the wavelength of a CW laser used in the DPP-assisted annealing. We have proposed a novel method of controlling the EL spectral shape by additionally using a pulsed light source in order to control the number of phonons for the DPP-assisted annealing. In this method, the Si crystal is irradiated with a pair of pulses having an arrival time difference between them. The number of coherent phonons created is increased (reduced) by tuning (detuning) this time difference. A Si-LED was subjected to DPP-assisted annealing using a 1.3?μm ( ?eV) CW laser and a mode-locked pulsed laser with a pulse width of 17?fs. When the number of phonons was increased, the EL emission spectrum broadened toward the high-energy side by 200?meV or more. The broadening towards the low-energy side was reduced to 120?meV. 1. Introduction Direct transition type semiconductors are mainly used in semiconductor light emitting diodes (LEDs) [1, 2]. The reason for this is that the probability of electric dipole transitions, in other words, the radiative recombination probability, is high. Also, the emission wavelength is determined by the bandgap energy, , of the material used. Therefore, for example, InGaAsP epitaxially grown on an InP substrate is mainly used as the active layer for near-infrared LEDs with emission wavelengths of 1.00–1.70?μm (0.73–1.24?eV), which includes the optical fiber communication wavelength band. Shortcomings with this approach are that InP is highly toxic [3], and In is a rare resource. Silicon (Si), on the other hand, is a semiconductor having low toxicity and no concerns about depletion of resources; however, its emission efficiency is low since it is an indirect transition type semiconductor. Therefore, Si is usually not suitable as a material for use in LEDs. Nevertheless, there is a great demand for the use of Si in light emitting devices, and there has been extensive research into improving its emission efficiency. For example, there has been research into making Si emit light in the visible region by utilizing the quantum size effect of Si and by using porous Si [4], a Si/SiO2 superlattice structure [5, 6], and Si nanoprecipitates in SiO2 [7], as well as research into making Si emit light in the near-infrared region by doping it with light-emitting materials, such as erbium (Er)-doped Si [8] and

References

[1]  Z. I. Alferov, “The history and future of semiconductor heterostructures,” Semiconductors, vol. 32, no. 1, pp. 1–14, 1998.
[2]  R. A. Milano, P. D. Dapkus, and G. E. Stillman, “An analysis of the performance of heterojunction for fiber optic communications,” IEEE Transactions on Electron Devices, vol. 29, no. 2, pp. 266–274, 1982.
[3]  National Toxicology Program, “NTP technical report on the toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-80-7) in F344/N rats and B6C3F1 mice (inhalation studies),” Tech. Rep. NTP TR 499, U.S. Department of health and human services, Public Health Service, National Institute of Health, 2001.
[4]  K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Silicon-based visible light-emitting devices integrated into microelectronic circuits,” Nature, vol. 384, no. 6607, pp. 338–341, 1996.
[5]  Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature, vol. 378, no. 6554, pp. 258–260, 1995.
[6]  L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Applied Physics Letters, vol. 92, no. 18, Article ID 181105, 2008.
[7]  T. Komoda, J. Kelly, F. Cristiano et al., “Visible photoluminescence at room temperature from microcrystalline silicon precipitates in SiO2 formed by ion implantation,” Nuclear Instruments and Methods in Physics Research B, vol. 96, no. 1-2, pp. 387–391, 1995.
[8]  S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Applied Physics Letters, vol. 97, no. 8, Article ID 081109, 2010.
[9]  S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Research Letters, vol. 6, no. 1, article 224, 10 pages, 2011.
[10]  M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature, vol. 412, no. 6849, pp. 805–808, 2001.
[11]  T. Kawazoe, K. Kobayashi, S. Takubo, and M. Ohtsu, “Nonadiabatic photodissociation process using an optical near field,” Journal of Chemical Physics, vol. 122, no. 2, Article ID 024715, 2005.
[12]  T. Kawazoe, M. A. Mueed, and M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Applied Physics B, vol. 104, no. 4, pp. 747–754, 2011.
[13]  T. Kawazoe, M. Ohtsu, K. Akahane, and N. Yamamoto, “Si homojunction structured near-infrared laser based on a phonon-assisted process,” Applied Physics B: Lasers and Optics, vol. 107, pp. 659–663, 2012.
[14]  H. Tanaka, T. Kawazoe, and M. Ohtsu, “Increasing Si photodetector photosensitivity in near-infrared region and manifestation of optical amplification by dressed photons,” Applied Physics B, vol. 108, no. 1, pp. 51–56, 2012.
[15]  N. Wada, T. Kawazoe, and M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Applied Physics B: Lasers and Optics, vol. 108, no. 1, pp. 25–29, 2012.
[16]  M. A. Tran, T. Kawazoe, and M. Ohtsu, “Fabrication of a bulk silicon p-n homojunction-structured light-emitting diode showing visible electroluminescence at room temperature,” Applied Physics A: Materials Science and Processing, vol. 115, no. 1, pp. 105–111, 2014.
[17]  S. K. Arora, A. J. Kothari, R. G. Patel, K. M. Chauha, and B. N. Chudasama, “Optical absorption in gel grown cadmium tartrate single crystals,” Journal of Physics, vol. 28, no. 1, pp. 48–52, 2006.
[18]  Y.-X. Yan, E. B. Gamble Jr., and K. A. Nelson, “Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications,” The Journal of Chemical Physics, vol. 83, no. 11, pp. 5391–5399, 1985.
[19]  M. Hase, K. Mizoguchi, H. Harima et al., “Optical control of coherent optical phonons in bismuth films,” Applied Physics Letters, vol. 69, no. 17, pp. 2474–2476, 1996.
[20]  P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, “Ab initio calculation of phonon dispersions in semiconductors,” Physical Review B, vol. 43, no. 9, pp. 7231–7242, 1991.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413