全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

DOI: 10.1155/2014/234095

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs) is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM) objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778. 1. Introduction Recovery after stroke is quite heterogeneous, as it is determined by the site and extent of lesion. The process of recovery occurs through a combination of spontaneous and learning-dependent processes. These include restitution (restoring the functional status of the injured neural tissue), substitution (reorganization of the spared pathways in order to relearn the lost functions), and compensation (reducing the disparity between the impaired function of the patient and the environmental demands on the patient) [1]. The process by which the above events occur includes angiogenesis, neurogenesis, and synaptic plasticity [2]. The overall outcome of these patients improves with rapid diagnosis, early preventive treatment, early recognition of complications, and mobilization [3]. After a central nervous system (CNS) insult like stroke, the quiescent stem cells present in the bone marrow show increased mobilization and migration from their resident bone marrow into the blood circulation as a result of cytokine production from the CNS. Thus the recruitment of bone marrow cells in the injured area of the brain is amplified. This process is the

References

[1]  P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” The Lancet, vol. 377, no. 9778, pp. 1693–1702, 2011.
[2]  P. Dharmasaroja, “Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke,” Journal of Clinical Neuroscience, vol. 16, no. 1, pp. 12–20, 2009.
[3]  M. Brainin, Y. Teuschl, and L. Kalra, “Acute treatment and long-term management of stroke in developing countries,” The Lancet Neurology, vol. 6, no. 6, pp. 553–561, 2007.
[4]  C. V. Borlongan, “Bone marrow stem cell mobilization in stroke: a bonehead may be good after all!,” Leukemia, vol. 25, no. 11, pp. 1674–1686, 2011.
[5]  A. R. Carter, L. T. Connor, and A. W. Dromerick, “Rehabilitation after stroke: current state of the science,” Current Neurology and Neuroscience Reports, vol. 10, no. 3, pp. 158–166, 2010.
[6]  L. Brewer, F. Horgan, A. Hickey, and D. Williams, “Stroke rehabilitation: recent advances and future therapies,” QJM, vol. 106, no. 1, pp. 11–25, 2013.
[7]  J. D. Flax, S. Aurora, C. Yang et al., “Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes,” Nature Biotechnology, vol. 16, no. 11, pp. 1033–1438, 1998.
[8]  F. H. Gage, P. W. Coates, T. D. Palmer et al., “Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11879–11883, 1995.
[9]  Y. Liu, B. T. Himes, J. Solowska et al., “Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus,” Experimental Neurology, vol. 158, no. 1, pp. 9–26, 1999.
[10]  G. Mu?oz-Elias, D. Woodbury, and I. B. Black, “Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions,” Stem Cells, vol. 21, no. 4, pp. 437–448, 2003.
[11]  D. C. Hess and C. V. Borlongan, “Cell-based therapy in ischemic stroke,” Expert Review of Neurotherapeutics, vol. 8, no. 8, pp. 1193–1201, 2008.
[12]  K. Hara, T. Yasuhara, M. Maki et al., “Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke,” Progress in Neurobiology, vol. 85, no. 3, pp. 318–334, 2008.
[13]  D. C. Hess and C. V. Borlongan, “Stem cells and neurological diseases,” Cell Proliferation, vol. 41, no. 1, pp. 94–114, 2008.
[14]  L. Zhao, W. Duan, M. Reyes, C. D. Keene, C. M. Verfaillie, and W. C. Low, “Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats,” Experimental Neurology, vol. 174, no. 1, pp. 11–20, 2002.
[15]  W. C. Shyu, S. Z. Lin, M. F. Chiang, C. Su, and H. Li, “Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing β1 integrin-mediated angiogenesis in chronic stroke rats,” The Journal of Neuroscience, vol. 26, no. 13, pp. 3444–3453, 2006.
[16]  N. Pavlichenko, I. Sokolova, S. Vijde et al., “Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats,” Brain Research, vol. 1233, pp. 203–213, 2008.
[17]  J. Chen, Z. G. Zhang, Y. Li et al., “Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats,” Circulation Research, vol. 92, no. 6, pp. 692–699, 2003.
[18]  Y. Li, J. Chen, L. Wang, M. Lu, and M. Chopp, “Treatment of stroke in rat with intracarotid administration of marrow stromal cells,” Neurology, vol. 56, no. 12, pp. 1666–1672, 2001.
[19]  S. Jeong, K. Chu, K. Jung, S. U. Kim, M. Kim, and J. Roh, “Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage,” Stroke, vol. 34, no. 9, pp. 2258–2263, 2003.
[20]  D. C. Hess, W. D. Hill, A. Martin-Studdard, J. Carroll, J. Brailer, and J. Carothers, “Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke,” Stroke, vol. 33, no. 5, pp. 1362–1368, 2002.
[21]  O. Y. Bang, J. S. Lee, P. H. Lee, and G. Lee, “Autologous mesenchymal stem cell transplantation in stroke patients,” Annals of Neurology, vol. 57, no. 6, pp. 874–882, 2005.
[22]  J. S. Lee, J. M. Hong, G. J. Moon, P. H. Lee, Y. H. Ahn, and O. Y. Bang, “A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke,” Stem Cells, vol. 28, no. 6, pp. 1099–1106, 2010.
[23]  R. V. Carlson, K. M. Boyd, and D. J. Webb, “The revision of the Declaration of Helsinki: past, present and future,” The British Journal of Clinical Pharmacology, vol. 57, no. 6, pp. 695–713, 2004.
[24]  J. Chen and M. Chopp, “Neurorestorative treatment of stroke: cell and pharmacological approaches,” NeuroRx, vol. 3, no. 4, pp. 466–473, 2006.
[25]  J. M. Parent, Z. S. Vexler, C. Gong, N. Derugin, and D. M. Ferriero, “Rat forebrain neurogenesis and striatal neuron replacement after focal stroke,” Annals of Neurology, vol. 52, no. 6, pp. 802–813, 2002.
[26]  A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, “Neuronal replacement from endogenous precursors in the adult brain after stroke,” Nature Medicine, vol. 8, no. 9, pp. 963–970, 2002.
[27]  R. J. Nudo, “Functional and structural plasticity in motor cortex: implications for stroke recovery,” Physical Medicine and Rehabilitation Clinics of North America, vol. 14, no. 1, pp. S57–S76, 2003.
[28]  R. J. Nudo, E. J. Plautz, and S. B. Frost, “Role of adaptive plasticity in recovery of function after damage to motor cortex,” Muscle and Nerve, vol. 24, no. 8, pp. 1000–1019, 2001.
[29]  R. P. Stroemer, T. A. Kent, and C. E. Hulsebosch, “Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats,” Stroke, vol. 29, no. 11, pp. 2381–2395, 1998.
[30]  M. Dezawa, M. Hoshino, Y. Nabeshima, and C. Ide, “Marrow stromal cells: Implications in health and disease in the nervous system,” Current Molecular Medicine, vol. 5, no. 7, pp. 723–732, 2005.
[31]  J. Chen, Y. Li, L. Wang et al., “Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats,” Stroke, vol. 32, no. 4, pp. 1005–1011, 2001.
[32]  Y. Li, J. Chen, C. L. Zhang et al., “Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells,” Glia, vol. 49, no. 3, pp. 407–417, 2005.
[33]  L. H. Shen, Y. Li, J. Chen, et al., “Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, pp. 6–11, 2006.
[34]  S. Wislet-Gendebien, F. Bruyère, G. Hans, P. Leprince, G. Moonen, and B. Rogister, “Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4,” BMC Neuroscience, vol. 5, article 33, 2004.
[35]  P. Carmeliet and E. Storkebaum, “Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders,” Seminars in Cell and Developmental Biology, vol. 13, no. 1, pp. 39–53, 2002.
[36]  K. Jin, Y. Zhu, Y. Sun, X. O. Mao, L. Xie, and D. A. Greenberg, “Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11946–11950, 2002.
[37]  A. Sharma and N. Gokulchandran, “Mechanism of action,” in Stem cell Therapy in Neurological Disorders, A. Sharma and N. Gokulchnadran, Eds., pp. 61–69, Surekha Press, Mumbai, India, 2010.
[38]  A. Mahmood, D. Lu, M. Lu et al., “Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells,” Neurosurgery, vol. 53, no. 3, pp. 697–703, 2003.
[39]  A. Sharma, H. Sane, A. Paranjape et al., “Positron emission tomography—computer tomography scan used as a monitoring tool following cellular therapy in cerebral palsy and mental retardation—a case report,” Case Reports in Neurological Medicine, vol. 2013, Article ID 141983, 6 pages, 2013.
[40]  A. Sharma, P. Kulkarni, H. Sane, et al., “Positron emission tomography—computed tomography scan captures the effects of cellular therapy in a case of cerebral palsy,” Journal of Clinical Case Reports, vol. 2, no. 13, 2012.
[41]  A. Sharma, N. Gokulchandran, G. Chopra et al., “Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life,” Cell Transplantation, vol. 21, no. 1, pp. S79–S90, 2012.
[42]  A. Sharma, N. Gokulchandran, H. Sane, et al., “Detailed analysis of the clinical effects of cell therapy for thoracolumbar spinal cord injury: an original study,” Journal of Neurorestoratology, vol. 1, pp. 13–22, 2013.
[43]  A. Sharma, H. Sane, N. Gokulchandran, et al., “Role of autologous bone marrow mononuclear cells in chronic cervical spinal cord injury—a longterm follow up study,” Journal of Neurological Disorders, vol. 1, no. 4, 2013.
[44]  A. Sharma, P. Badhe, P. Kulkarni, et al., “Autologous bone marrow derived mononuclear cells for the treatment of spinal cord injury,” The Journal of Orthopaedic and Trauma Surgery, vol. 1, no. 1, pp. 33–36, 2011.
[45]  A. Sharma, N. Gokulchandran, G. Chopra et al., “Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life,” Cell Transplantation, vol. 21, supplement 1, pp. S79–S90, 2012.
[46]  A. Sharma, H. Sane, P. Badhe, et al., “Autologous bone marrow stem cell therapy shows functional improvement in hemorrhagic stroke,” Indian Journal of Clinical Practice, vol. 23, no. 2, pp. 100–105, 2012.
[47]  A. Stolzing, E. Jones, D. McGonagle, and A. Scutt, “Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies,” Mechanisms of Ageing and Development, vol. 129, no. 3, pp. 163–173, 2008.
[48]  H. W. Mahncke, A. Bronstone, and M. M. Merzenich, “Chapter 6 Brain plasticity and functional losses in the aged: scientific bases for a novel intervention,” Progress in Brain Research, vol. 157, pp. 81–109, 2006.
[49]  G. S. Smith, “Aging and neuroplasticity,” Guest Editorial.
[50]  P. Arora, S. Yardi, and N. Siddiqui, “Effect of core muscle strengtheneing on blance and quality of life in geriatric patients,” Indian Journal of Physiotherapy & Occupational Therapy, vol. 7, no. 2, p. 120, 2013.
[51]  H. Nakayama, H. S. J?rgensen, H. O. Raaschou, and T. S. Olsen, “The influence of age on stroke outcome: the Copenhagen Stroke Study,” Stroke, vol. 25, no. 4, pp. 808–813, 1994.
[52]  K. Salter, J. Jutai, M. Hartley et al., “Impact of early vs delayed admission to rehabilitation on functional outcomes in persons with stroke,” Journal of Rehabilitation Medicine, vol. 38, no. 2, pp. 113–117, 2006.
[53]  C. S. Piao, M. E. Gonzalez-Toledo, Y. Q. Xue et al., “The role of stem cell factor and granulocyte-colony stimulating factor in brain repair during chronic stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 4, pp. 759–770, 2009.
[54]  P. J. Kelly, K. L. Furie, S. Shafqat, N. Rallis, Y. Chang, and J. Stein, “Functional recovery following rehabilitation after hemorrhagic and ischemic stroke,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 7, pp. 968–972, 2003.
[55]  C. V. Granger, B. B. Hamilton, and R. C. Fiedler, “Discharge outcome after stroke rehabilitation,” Stroke, vol. 23, no. 7, pp. 978–982, 1992.
[56]  A. U. Hicks, K. Hewlett, V. Windle et al., “Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke,” Neuroscience, vol. 146, no. 1, pp. 31–40, 2007.
[57]  M. E. Raichle, “Visualizing the mind.,” Scientific American, vol. 270, no. 4, pp. 58–64, 1994.
[58]  E. K. J. Pauwels, M. J. Ribeiro, J. H. M. B. Stoot, V. R. McCready, M. Bourguignon, and B. Mazière, “FDG accumulation and tumor biology,” Nuclear Medicine and Biology, vol. 25, no. 4, pp. 317–322, 1998.
[59]  J. A. Thie, “Understanding the standardized uptake value, its methods, and implications for usage,” Journal of Nuclear Medicine, vol. 45, no. 9, pp. 1431–1434, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413