全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Methanol Extract of Euchelus asper Prevents Bone Resorption in Ovariectomised Mice Model

DOI: 10.1155/2014/348189

Full-Text   Cite this paper   Add to My Lib

Abstract:

Marine molluscs are widely distributed throughout the world and many bioactive compounds exhibiting antiviral, antitumor, antileukemic, and antibacterial activity have been reported worldwide. The present study was designed to investigate the beneficial effect of methanol extract of Euchelus asper (EAME) on estrogen deficiency induced osteoporosis in ovariectomised mice model. Forty-two female Swiss albino mice were randomly assigned into Sham operated (Sham) group and six ovariectomised (OVX) subgroups such as OVX with vehicle (OVX); OVX with estradiol (2?mg/kg/day); OVX with EAME of graded doses (25, 50, 100, and 200?mg/kg/day). Bone turnover markers like serum alkaline phosphatase (ALP), serum acid phosphatase (ACP), serum calcium, and histological investigations of tibia and uterus were analysed. Metaphyseal DNA content of the femur bone was also studied. Antiosteoclastogenic activity of EAME was examined. Administration of EAME was able to reduce the increased bone turnover markers in the ovariectomised mice. Histomorphometric analysis revealed an increase in bone trabeculation and restoration of trabecular separation by EAME treatment. Metaphyseal DNA content of the femur of the OVX mice was increased by EAME administration. EAME also showed a potent antiosteoclastogenic behaviour. Thus, the present study reveals that EAME was able to successfully reduce the estrogen deficiency induced bone loss. 1. Introduction Osteoporosis is a condition of skeletal fragility characterised by decreased bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in risk of fracture [1]. Osteoporosis is a worldwide health issue, with a high prevalence of disease not only in western countries but also in Asia and Latin America [2]. Women were found to have a higher risk of getting osteoporosis than men with the ratio of 1.6?:?1. Postmenopausal osteoporosis stems from the cessation of ovarian function at menopause which heightens and prolongs the rapid phase of bone loss characteristic of the early postmenopausal period [3]. It is associated with significant morbidity, mortality, reduction in quality of life, and increasing health care. About 1 in 3 women aged more than 50 years experienced an osteoporotic fracture in their lifetime. In women, osteoporosis and fractures mainly occur as a consequence of decrease in estrogen after menopause and result from an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts, leading to a net bone loss with each remodelling cycle. Estrogen deficiency also augments erosion

References

[1]  D. A. Davey, “Osteoporosis, osteopenia and fracture risk: widening the therapeutic horizons,” The South African Medical Journal, vol. 102, no. 5, pp. 285–288, 2012.
[2]  D. K. Dhanwal, E. M. Dennison, N. C. Harvey, and C. Cooper, “Epidemiology of hip fracture: worldwide geographic variation,” Indian Journal of Orthopaedics, vol. 45, no. 1, pp. 15–22, 2011.
[3]  J. Gao, R. Tiwari-Pandey, R. Samadfam et al., “Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone,” Endocrinology, vol. 148, no. 6, pp. 2613–2621, 2007.
[4]  R. Pacifici, “The immune system and bone,” Archives of Biochemistry and Biophysics, vol. 503, no. 1, pp. 41–53, 2010.
[5]  R. Canderelli, L. A. Leccesse, and N. L. Miller, “Benefits of hormone replacement therapy in postmenopausal women,” Journal of the American Academy of Nurse Practitioners, vol. 19, no. 12, pp. 635–641, 2007.
[6]  J. A. Cauley, J. Robbins, Z. Chen et al., “Effects of estrogen plus progestin on risk of fracture and bone mineral density: the women's health initiative randomized trial,” The Journal of the American Medical Association, vol. 290, no. 13, pp. 1729–1738, 2003.
[7]  D. Apte, Field Guide to the Marine Life of India, Stusa Mudra Private Limited, Mumbai, India, 2012.
[8]  W. E. G. Müller, X. Wang, K. P. Jochum, and H. C. Schr?der, “Self healing, an intrinsic property of biomineralisation processes,” International Union of Biochemistry and Molecular Biology Life, vol. 65, no. 5, pp. 382–396, 2013.
[9]  F. Marin and G. Luquet, “Molluscan shell proteins,” Comptes Rendus—Palevol, vol. 3, no. 6-7, pp. 469–492, 2004.
[10]  A. S. Akerkar, C. A. Ponkshe, and M. M. Indap, “Evaluation of immunomodulatory activity of extracts from marine animals,” Indian Journal of Marine Sciences, vol. 38, no. 1, pp. 22–27, 2009.
[11]  S.-S. Gu, Y. Zhang, X.-L. Li et al., “Involvement of the skeletal renin-angiotensin system in age-related osteoporosis of ageing mice,” Bioscience, Biotechnology and Biochemistry, vol. 76, no. 7, pp. 1367–1371, 2012.
[12]  M. Yamaguchi, R. Hamamoto, S. Uchiyama, K. Ishiyama, and K. Hashimoto, “Anabolic effects of bee pollen Cistus ladaniferus extract on bone components in the femoral-diaphyseal and -metaphyseal tissues of rats in vitro and in vivo,” Journal of Health Science, vol. 52, no. 1, pp. 43–49, 2006.
[13]  S. Uchiyama, K. Ishiyama, K. Hashimoto, and M. Yamaguchi, “Synergistic effect of β-cryptoxanthin and zinc sulfate on the bone component in rat femoral tissues in Vitro: the unique anabolic effect with zinc,” Biological and Pharmaceutical Bulletin, vol. 28, no. 11, pp. 2142–2145, 2005.
[14]  T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983.
[15]  H. B. Kwak, B. K. Lee, J. Oh et al., “Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression,” Bone, vol. 46, no. 3, pp. 724–731, 2010.
[16]  G. Swarnkar, K. Sharan, J. A. Siddiqui et al., “A novel flavonoid isolated from the steam-bark of Ulmus Wallichiana Planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation,” European Journal of Pharmacology, vol. 658, no. 2-3, pp. 65–73, 2011.
[17]  S.-H. Lim, T.-Y. Ha, S.-R. Kim, J. Ahn, H. J. Park, and S. Kim, “Ethanol extract of Psoralea corylifolia L. and its main constituent, bakuchiol, reduce bone loss in ovariectomised Sprague-Dawley rats,” British Journal of Nutrition, vol. 101, no. 7, pp. 1031–1039, 2009.
[18]  N. Li, L.-P. Qin, T. Han, Y.-B. Wu, Q.-Y. Zhang, and H. Zhang, “Inhibitory effects of morinda officinalis extract on bone loss in ovariectomized rats,” Molecules, vol. 14, no. 6, pp. 2049–2061, 2009.
[19]  T. Matsui and M. Yamaguchi, “Zinc modulation of insulin-like growth factor's effect in osteoblastic MC3T3-E1 cells,” Peptides, vol. 16, no. 6, pp. 1063–1068, 1995.
[20]  T. Hertrampf, B. Schleipen, M. Velders, U. Laudenbach, K. H. Fritzemeier, and P. Diel, “Estrogen receptor subtype-specific effects on markers of bone homeostasis,” Molecular and Cellular Endocrinology, vol. 291, no. 1-2, pp. 104–108, 2008.
[21]  M. A. Jackson, U. T. Iwaniec, R. T. Turner, T. J. Wronski, and S. P. Kalra, “Effects of increased hypothalamic leptin gene expression on ovariectomy-induced bone loss in rats,” Peptides, vol. 32, no. 8, pp. 1575–1580, 2011.
[22]  Y. Zhang, W.-P. Lai, P.-C. Leung, C.-F. Wu, and M.-S. Wong, “Short- to mid-term effects of ovariectomy on bone turnover, bone mass and bone strength in rats,” Biological and Pharmaceutical Bulletin, vol. 30, no. 5, pp. 898–903, 2007.
[23]  M. Yamaguchi and M. N. Weitzmann, “The estrogen 17β-estradiol and phytoestrogen genistein mediate differential effects on osteoblastic NF-κB activity,” International Journal of Molecular Medicine, vol. 23, no. 2, pp. 297–301, 2009.
[24]  A. D. Papaconstantinou, T. H. Umbreit, B. R. Fisher, P. L. Goering, N. T. Lappas, and K. M. Brown, “Bisphenol A-induced increase in uterine weight and alterations in uterine morphology in ovariectomized B6C3F1 mice: role of the estrogen receptor,” Toxicological Sciences, vol. 56, no. 2, pp. 332–339, 2000.
[25]  S. Hidaka, Y. Okamoto, S. Uchiyama et al., “Royal jelly prevents osteoporosis in rats: beneficial effects in ovariectomy model and in bone tissue culture model,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 3, pp. 339–348, 2006.
[26]  J.-J. Body, P. Bergmann, S. Boonen et al., “Extraskeletal benefits and risks of calcium, vitamin D and anti-osteoporosis medications,” Osteoporosis International, vol. 23, no. 1, pp. S1–S23, 2012.
[27]  G. Lombardi, P. Lanteri, A. Colombini, and G. Banfi, “Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling,” Clinical Chemistry and Laboratory Medicine, vol. 50, no. 5, pp. 771–789, 2012.
[28]  O. Demontiero, C. Vidal, and G. Duque, “Aging and bone loss: new insights for the clinician,” Therapeutic Advances in Musculoskeletal Disease, vol. 4, no. 2, pp. 61–76, 2012.
[29]  D. B. Burr and M. A. Gallant, “Bone remodelling in osteoarthritis,” Nature Reviews Rheumatology, vol. 8, no. 11, pp. 665–672, 2012.
[30]  M. Kinugawa, S. Fukuzawa, and K. Tachibana, “Skeletal protein protection: the mode of action of an anti-osteoporotic marine alkaloid, norzoanthamine,” Journal of Bone and Mineral Metabolism, vol. 27, no. 3, pp. 303–314, 2009.
[31]  H. Z. Ke, H. K. Chen, H. A. Simmons et al., “Comparative effects of droloxifene, tamoxifen, and estrogen on bone, serum cholesterol, and uterine histology in the ovariectomized rat model,” Bone, vol. 20, no. 1, pp. 31–39, 1997.
[32]  F. Xie, C.-F. Wu, W.-P. Lai et al., “The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 3, pp. 353–361, 2005.
[33]  M. Yamaguchi, “Role of carotenoid β-cryptoxanthin in bone homeostasis,” Journal of Biomedical Science, vol. 19, no. 1, article no. 36, 2012.
[34]  M. Yamaguchi, S. Uchiyama, K. Ishiyama, and K. Hashimoto, “Oral administration in combination with zinc enhances β-cryptoxanthin- induced anabolic effects on bone components in the femoral tissues of rats in vivo,” Biological and Pharmaceutical Bulletin, vol. 29, no. 2, pp. 371–374, 2006.
[35]  N. L. Fazzalari, “Bone remodeling: a review of the bone microenvironment perspective for fragility fracture (osteoporosis) of the hip,” Seminars in Cell and Developmental Biology, vol. 19, no. 5, pp. 467–472, 2008.
[36]  A. Hayman, “Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy,” Autoimmunity, vol. 41, no. 3, pp. 218–223, 2008.
[37]  S. Kazami, M. Muroi, M. Kawatani et al., “Iejimalides show anti-osteoclast activity via V-ATPase inhibition,” Bioscience, Biotechnology and Biochemistry, vol. 70, no. 6, pp. 1364–1370, 2006.
[38]  B. Balakrishnan, M. Indap, S. P. Singh, C. M. Krishna, and S. V. Chiplunkar, “Turbo methanol extract inhibits bone resorption through regulation of T cell function,” Bone, vol. 58, pp. 114–125, 2014.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133