全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Allergy  2011 

Airway Epithelium in Atopic and Nonatopic Asthma: Similarities and Differences

DOI: 10.5402/2011/195846

Full-Text   Cite this paper   Add to My Lib

Abstract:

Asthma is an inflammatory disorder of the airways, and the airway epithelium has the central role in its pathogenesis. In general, the airway inflammation is characterised by the infiltration of the epithelium and submucosa by a range of inflammatory cells driven largely by Th-2 lymphocytes, eosinophils, and mast cells. The pathogenic mechanisms of nonatopic asthma in comparison to its atopic counterpart have always been a subject of debate. Although clinically are two distinct entities, more similarities than differences have been observed between the two in terms of immunopathogenesis, underlying IgE mechanisms, and so on. in a number of previous studies. More information has become available in recent years comparing the ultrastructure of the epithelium in these two types of asthma. A comparison of airway epithelium in atopic and nonatopic asthma is presented here from the available information in the literature. Similarities outnumber the differences, until we unravel the mystery surrounding these two important phenotypes of asthma in more detail. 1. Introduction Asthma is a common chronic disorder of the airways that is complex and characterized by variable and recurring symptoms, airflow obstruction, bronchial hyper responsiveness, and underlying inflammation [1]. Asthma may be classified clinically on the basis of various parameters including the atopic status of the individual, the degree of airway obstruction, or the nature of trigger factors. By convention, the classification into atopic or nonatopic asthma is based on the presence or absence of clinical symptoms precipitated by one or more common aeroallergens, supported by the presence of allergen-specific antibodies as evidenced by skin prick +/? serological tests. The airways epithelium likely plays a key role in the pathogenesis of asthma, as it is a key interface with the external environment. There is ongoing debate as to whether atopic and nonatopic asthma are immunopathologically two distinct entities or if both are driven by similar mechanisms, and the answer to this question is still not clear. The entity of intrinsic or nonatopic asthma continues to raise questions about the possible role of IgE-mediated mechanisms in asthma pathogenesis. The clarification of this issue becomes more relevant with the current availability of anti-IgE therapy for the treatment of atopic asthma. The main theme of this paper is to address airway epithelium as central to the theatre of asthmatic inflammation and to compare the airways microenvironment in atopic and nonatopic asthma. 2. Airway Epithelium

References

[1]  Institute, N.H.L.A.B., 2007, http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
[2]  D. Spina, “Epithelium smooth muscle regulation and interactions,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 5, pp. S141–S145, 1998.
[3]  D. A. Knight and S. T. Holgate, “The airway epithelium: structural and functional properties in health and disease,” Respirology, vol. 8, no. 4, pp. 432–446, 2003.
[4]  S. T. Holgate, “Epithelium dysfunction in asthma,” Journal of Allergy and Clinical Immunology, vol. 120, no. 6, pp. 1233–1244, 2007.
[5]  S. T. Holgate, “Asthma: more than an inflammatory disease,” Current Opinion in Allergy and Clinical Immunology, vol. 2, no. 1, pp. 27–29, 2002.
[6]  C. Corrigan, “Mechanisms of intrinsic asthma,” Current Opinion in Allergy and Clinical Immunology, vol. 4, no. 1, pp. 53–56, 2004.
[7]  F. M. Rackemann, “A working classification of asthma,” The American Journal of Medicine, vol. 3, no. 5, pp. 601–606, 1947.
[8]  M. Humbert, S. R. Durham, S. Ying et al., “IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and nonatopic asthma: evidence against 'intrinsic' asthma being a distinct immunopathologic entity,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 5, pp. 1497–1504, 1996.
[9]  M. Humbert, G. Menz, S. Ying et al., “The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences,” Immunology Today, vol. 20, no. 11, pp. 528–533, 1999.
[10]  A. Nieves, A. Magnan, S. Boniface et al., “Phenotypes of asthma revisited upon the presence of atopy,” Respiratory Medicine, vol. 99, no. 3, pp. 347–354, 2005.
[11]  P. Godard, J. Bousquet, and F. B. Michael, “Extrinsic and intrinsic asthma: still a matter for debate?” Clinical Asthma Reviews, vol. 1, pp. 19–22, 1997.
[12]  B. Wuthrich, C. Schindler, P. Leuenberger et al., “Prevalence of atopy and pollinosis in the adult population of Switzerland (SAPALDIA study),” International Archives of Allergy and Immunology, vol. 106, no. 2, pp. 149–156, 1995.
[13]  A. L. Comi, A. Tedeschi, M. Lorini, and A. Miadonna, “Novel clinical and serological aspects in non-allergic asthma,” Respiratory Medicine, vol. 101, no. 12, pp. 2526–2533, 2007.
[14]  A. Cartier, N. C. Thomson, and P. A. Frith, “Allergen-induced increase in bronchial responsiveness to histamine: relationship to the late asthmatic response and change in airway caliber,” Journal of Allergy and Clinical Immunology, vol. 70, no. 3, pp. 170–177, 1982.
[15]  A. J. Dorward, M. J. Colloff, N. S. MacKay, C. McSharry, and N. C. Thomson, “Effect of house dust mite avoidance measures on adult atopic asthma,” Thorax, vol. 43, no. 2, pp. 98–102, 1988.
[16]  H. J. Gould, P. Takhar, H. E. Harries, E. Chevretton, and B. J. Sutton, “The allergic March from Staphylococcus aureus superantigens to immunoglobulin E,” Chemical Immunology and Allergy, vol. 93, no. 1, pp. 106–136, 2007.
[17]  J. Y. Lee, H. M. Kim, Y. M. Ye et al., “Role of staphylococcal superantigen-specific IgE antibodies in aspirin-intolerant asthma,” Allergy and Asthma Proceedings, vol. 27, no. 5, pp. 341–346, 2006.
[18]  L. S. Ou, E. Goleva, C. Hall, and D. Y. M. Leung, “T regulatory cells in atopic dermatitis and subversion of their activity by superantigens,” Journal of Allergy and Clinical Immunology, vol. 113, no. 4, pp. 756–763, 2004.
[19]  I. D. Cardona, E. Goleva, L. S. Ou, and D. Y. M. Leung, “Staphylococcal enterotoxin B inhibits regulatory T cells by inducing glucocorticoid-induced TNF receptor-related protein ligand on monocytes,” Journal of Allergy and Clinical Immunology, vol. 117, no. 3, pp. 688–695, 2006.
[20]  A. M. Bentley, G. Menz, C. Storz et al., “Identification of T lymphocytes, macrophages, and activated eosinophils in the bronchial mucosa in intrinsic asthma: relationship to symptoms and bronchial responsiveness,” American Review of Respiratory Disease, vol. 146, no. 2, pp. 500–506, 1992.
[21]  A. M. Bentley, S. R. Durham, and A. B. Kay, “Comparison of the immunopathology of extrinsic, intrinsic and occupational asthma,” Journal of Investigational Allergology and Clinical Immunology, vol. 4, no. 5, pp. 222–232, 1994.
[22]  A. T. C. Kotsimbos, M. Humbert, E. Minshall et al., “Upregulation of αGM-CSF-receptor in nonatopic asthma but not in atopic asthma,” Journal of Allergy and Clinical Immunology, vol. 99, no. 5, pp. 666–672, 1997.
[23]  S. Shahana, E. Bj?rnsson, D. Ludviksdottir et al., “Ultrastructure of bronchial biopsies from patients with allergic and non-allergic asthma,” Respiratory Medicine, vol. 99, no. 4, pp. 429–443, 2005.
[24]  K. Amin, D. Lúdvíksdóttir, C. Janson et al., “Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 6, pp. 2295–2301, 2000.
[25]  A. P. Kowalczyk, E. A. Bornslaeger, S. M. Norvell, H. L. Palka, and K. J. Green, “Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments,” International Review of Cytology, vol. 185, pp. 237–302, 1999.
[26]  K. J. Green and C. A. Gaudry, “Are desmosomes more than tethers for intermediate filaments?” Nature Reviews Molecular Cell Biology, vol. 1, no. 3, pp. 208–216, 2000.
[27]  C. L. Ordo?ez, R. Khashayar, H. H. Wong et al., “Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, pp. 517–523, 2001.
[28]  M. Milanese, E. Crimi, A. Scordamaglia et al., “On the functional consequences of bronchial basement membrane thickening,” Journal of Applied Physiology, vol. 91, no. 3, pp. 1035–1040, 2001.
[29]  A. L. James, P. S. Maxwell, G. Pearce-Pinto, J. G. Elliot, and N. G. Carroll, “The relationship of reticular basement membrane thickness to airway wall remodeling in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 12, pp. 1590–1595, 2002.
[30]  C. Ward, M. Pais, R. Bish et al., “Airway inflammation, basement membrane thickening and bronchial hyperresponsiveness in asthma,” Thorax, vol. 57, no. 4, pp. 309–316, 2002.
[31]  J. R. Brown, J. Kleimberg, M. Marini, G. Sun, A. Bellini, and S. Mattoli, “Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation,” Clinical and Experimental Immunology, vol. 114, no. 2, pp. 137–146, 1998.
[32]  A. Jatakanon, S. Lim, and P. J. Barnes, “Changes in sputum eosinophils predict loss of asthma control,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 1, pp. 64–72, 2000.
[33]  M. Humbert, J. A. Grant, L. Taborda-Barata et al., “High-affinity IgE receptor (FcεRI)-bearing cells in bronchial biopsies from atopic and nonatopic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 6, pp. 1931–1937, 1996.
[34]  S. E. Wenzel, S. J. Szefler, D. Y. M. Leung, S. I. Sloan, M. D. Rex, and R. J. Martin, “Bronchoscopic evaluation of severe asthma: persistent inflammation associated with high dose glucocorticoids,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 3, pp. 737–743, 1997.
[35]  S. Mattoli, M. Marini, and A. Fasoli, “Expression of the potent inflammatory cytokines, GM-CSF, IL6, and IL8, in bronchial epithelial cells of asthmatic patients,” Chest, vol. 101, no. 3, supplement, pp. 27S–29S, 1992.
[36]  R. A. J. Warringa, H. J. J. Mengelers, J. A. M. Raaijmakers, P. L. B. Bruijnzeel, and L. Koenderman, “Upregulation of formyl-peptide and interleukin-8-induced eosinophil chemotaxis in patients with allergic asthma,” Journal of Allergy and Clinical Immunology, vol. 91, no. 6, pp. 1198–1205, 1993.
[37]  M. Humbert, S. Ying, C. Corrigan et al., “Bronchial mucosal expression of the genes encoding chemokines RANTES and MCP-3 in symptomatic atopic and nonatopic asthmatics: relationship to the eosinophil-active cytokines interleukin (IL)-5, granulocyte macrophage-colony-stimulating factor, and IL-3,” American Journal of Respiratory Cell and Molecular Biology, vol. 16, no. 1, pp. 1–8, 1997.
[38]  C. Walker, E. Bode, L. Boer, T. T. Hansel, K. Blaser, and J. C. Virchow, “Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage,” American Review of Respiratory Disease, vol. 146, no. 1, pp. 109–115, 1992.
[39]  C. K. Kim, J. Choi, Z. Callaway, K. Iijima, G. Volcheck, and H. Kita, “Increases in airway eosinophilia and a th1 cytokine during the chronic asymptomatic phase of asthma,” Respiratory Medicine, vol. 104, no. 10, pp. 1436–1443, 2010.
[40]  K. Zeibecoglou, S. Ying, Q. Meng, L. W. Poulter, D. S. Robinson, and A. B. Kay, “Macrophage subpopulations and macrophage-derived cytokines in sputum of atopic and nonatopic asthmatic subjects and atopic and normal control subjects,” Journal of Allergy and Clinical Immunology, vol. 106, no. 4, pp. 697–704, 2000.
[41]  S. Ying, Q. Meng, K. Zeibecoglou et al., “Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (intrinsic) asthmatics,” Journal of Immunology, vol. 163, no. 11, pp. 6321–6329, 1999.
[42]  N. Powell, M. Humbert, S. R. Durham, B. Assoufi, A. B. Kay, and C. J. Corrigan, “Increased expression of mRNA encoding RANTES and MCP-3 in the bronchial mucosa in atopic asthma,” European Respiratory Journal, vol. 9, no. 12, pp. 2454–2460, 1996.
[43]  S. G. Folkard, J. Westwick, and A. B. Millar, “Production of interleukin-8, RANTES and MCP-1 in intrinsic and extrinsic asthmatics,” European Respiratory Journal, vol. 10, no. 9, pp. 2097–2104, 1997.
[44]  S. R. Durham, S. Ying, Q. Meng, M. Humbert, H. Gould, and A. B. Kay, “Local expression of germline gene transcripts (I epsilon) and RNA for the heavy chain IgE (C epsilon) in the bronchial mucosa in atopic and non-atopic asthma,” Journal of Allergy and Clinical Immunology, vol. 101, article S162, 1998.
[45]  P. Takhar, C. J. Corrigan, L. Smurthwaite et al., “Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma,” Journal of Allergy and Clinical Immunology, vol. 119, no. 1, pp. 213–218, 2007.
[46]  S. Ying, B. O'Connor, J. Ratoff et al., “Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity,” Journal of Immunology, vol. 174, no. 12, pp. 8183–8190, 2005.
[47]  P. Panina-Bordignon, A. Papi, M. Mariani et al., “The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics,” The Journal of Clinical Investigation, vol. 107, no. 11, pp. 1357–1364, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413