全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Biochar Properties Affected by Different Pyrolysis Temperatures Using Visible-Near-Infrared Spectroscopy

DOI: 10.5402/2012/712837

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rapid characterization of biochar for energy and ecological purpose utilization is fundamental. In this work, visible and near-infrared (vis-NIR) spectroscopy was used to measure ash, volatile matter, fixed carbon contents, and calorific value of three types of biochar produced from pine wood, cedar wood, and cotton stalk, respectively. The vis-NIR spectroscopy was also used to discriminate biochar feedstock types and pyrolysis temperature. Prediction result shows that partial least squares (PLS) regression calibrating the spectra to the values of biochar properties achieved very good or excellent performance with coefficient of determination ( ) of 0.86~0.91 and residual prediction deviation (RPD) of 2.58~3.32 for ash, volatile matter, and fixed carbon, and good prediction with of 0.81 and RPD of 2.30 for calorific value. Linear discrimination analysis (LDA) of the principal components (PCs) produced from PCA of wavelength matrix shows that three types of biochar can be successfully discriminated with 95.2% accuracy. The classification of biochar with different pyrolysis temperatures can be conducted with 69% accuracy for all three types and 100% accuracy for single type of cotton stalk. This experiment suggests that the vis-NIR spectroscopy is promising as an alternative of traditionally quantitative and qualitative analysis of biochar properties. 1. Introduction Biochar is the product of thermal degradation of organic materials in the absence of air (pyrolysis). Except for being an excellent material for energy purpose utilization, biochar has also been described as a possible means to improve soil fertility as well as other ecosystem services and sequester carbon (C) to mitigate climate change [1, 2]. Conversion of agricultural wastes into biochars not only can save natural resources but also protect environment. Biochar quality is mainly influenced by its feedstock type as well as pyrolysis conditions. However, it is very cost- and time-consuming to determinate biochar properties, for example, to measure calorific value, by using conventionally physic-chemical means in laboratory. Thus, it is necessary to develop an alternative for rapid characterization of biochar properties. Recently, near-infrared reflectance spectroscopy (NIRS) has received increasing attention because it is characteristic of rapid measurement, ease to use, and absence of agents. This technology has been used for the analysis of biomass feedstock properties. Sanderson et al. [3] used the NIRS to determine the chemical compositions of several woody and herbaceous feedstocks,

References

[1]  J. Lehmann, “A handful of carbon,” Nature, vol. 447, no. 7141, pp. 143–144, 2007.
[2]  J. Lehmann, “Bio-energy in the black,” Frontiers in Ecology and the Environment, vol. 5, no. 7, pp. 381–387, 2007.
[3]  M. A. Sanderson, F. Agblevor, M. Collins, and D. K. Johnson, “Compositional analysis of biomass feedstocks by near infrared reflectance spectroscopy,” Biomass and Bioenergy, vol. 11, no. 5, pp. 365–370, 1996.
[4]  N. Labbé, S.-H. Lee, H.-W. Cho, M. K. Jeong, and N. André, “Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods,” Bioresource Technology, vol. 99, no. 17, pp. 8445–8452, 2008.
[5]  G. G. Allison, C. Morris, E. Hodgson et al., “Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy,” Bioresource Technology, vol. 100, no. 24, pp. 6428–6433, 2009.
[6]  K. Nkansah, B. Dawson-Andoh, and J. Slahor, “Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: part 1 yellow-poplar (Liriodendron tulipifera L.),” Bioresource Technology, vol. 101, no. 12, pp. 4570–4576, 2010.
[7]  C. C. Fagan, C. D. Everard, and K. McDonnell, “Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy,” Bioresource Technology, vol. 102, no. 8, pp. 5200–5206, 2011.
[8]  H. Yang, B. Kuang, and A. M. Mouazen, “Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction,” European Journal of Soil Science, vol. 63, no. 3, pp. 410–420, 2012.
[9]  H. Yang and A. M. Mouazen, “Vis/near and mid-infrared spectroscopy for predicting soil N and C at a farm scale,” in Infrared Spectroscopy-Life and Biomedical Sciences, T. Theophanides, Ed., pp. 185–210, Intech Press, Rijeka, Croatia, 2012.
[10]  R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma, vol. 131, no. 1-2, pp. 59–75, 2006.
[11]  H. Yang, B. Kuang, and A. M. Mouazen, “In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum) fruits using fiber-optic visible-near-infrared (Vis-NIR) spectroscopy,” Applied Spectroscopy, vol. 65, no. 8, pp. 931–938, 2011.
[12]  R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The Mahalanobis distance,” Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 1, pp. 1–18, 2000.
[13]  M. Garcia-Perez, X. S. Wang, J. Shen et al., “Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products,” Industrial and Engineering Chemistry Research, vol. 47, no. 6, pp. 1846–1854, 2008.
[14]  K. H. Kim, J. Y. Kim, T. S. Cho, and J. W. Choi, “Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida),” Bioresource Technology, vol. 118, pp. 158–162, 2012.
[15]  M. Keiluweit, P. S. Nico, M. Johnson, and M. Kleber, “Dynamic molecular structure of plant biomass-derived black carbon (biochar),” Environmental Science and Technology, vol. 44, no. 4, pp. 1247–1253, 2010.
[16]  Y. Q. Chen, H. P. Yang, X. H. Wang, S. H. Zhang, and H. P. Chen, “Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature,” Bioresource Technology, vol. 107, pp. 411–418, 2012.
[17]  S. T. Thangalazhy-Gopakumar, S. Adhikari, H. Ravindran et al., “Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor,” Bioresource Technology, vol. 101, no. 21, pp. 8389–8395, 2010.
[18]  A. Demirbas, “Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues,” Journal of Analytical and Applied Pyrolysis, vol. 72, no. 2, pp. 243–248, 2004.
[19]  H. Abdullah and H. Wu, “Biochar as a fuel: 1. properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions,” Energy & Fuels, vol. 23, no. 8, pp. 4174–4181, 2009.
[20]  X. Peng, L. L. Ye, C. H. Wang, H. Zhou, and B. Sun, “Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China,” Soil and Tillage Research, vol. 112, no. 2, pp. 159–166, 2011.
[21]  B. B. Uzun, A. E. Pütün, and E. Pütün, “Composition of products obtained via fast pyrolysis of olive-oil residue: effect of pyrolysis temperature,” Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1-2, pp. 147–153, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133