全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nuclear Magnetic Resonance Spectroscopy of Germanium Compounds

DOI: 10.5402/2012/718050

Full-Text   Cite this paper   Add to My Lib

Abstract:

The field of NMR spectroscopy is reviewed in this paper, from early developments in the 1950s to present day research. Specific attention is paid to recent investigations, including the observation of fluxional behavior of hypervalent germanium species having five or six attached ligands by 73Ge NMR spectroscopy, the spectral properties of linear and branched oligogermanes that contain single germanium-germanium bonds, and the relatively new field of solid-state germanium-73 NMR. 1. Introduction The use of nuclear magnetic resonance (NMR) spectroscopy to characterize and probe the nuclei of the group 14 elements is highly useful, with the notable exception of the central element germanium. Carbon-13 NMR spectroscopy is invaluable for the characterization of organic compounds, and silicon-29 NMR spectroscopy can provide a wealth of structural information for organosilicon compounds [17–20], and allows direct observation of the silicon nucleus itself rather than gaining information regarding the silicon centers indirectly by probing the attached organic substituents. Tin has two NMR-active nuclei, tin-117 and tin-119, which, like carbon-13 and silicon-29, are both spin 1/2 nuclei. These two nuclei have also been extensively used for the characterization of organotin compounds, and 117Sn–119Sn coupling between the two nuclei can also be readily observed [21]. Lead-207 is the only NMR-active nucleus for this element, and it is also spin 1/2 and has been regularly used to characterize organolead compounds [22]. The relevant NMR parameters for the group 14 nuclei are summarized in Table 1. Table 1: Nuclear magnetic resonance data for the group 14 elements. In terms of germanium, the only NMR-active nucleus this element possesses is 73Ge [23, 24], which has a spin of 9/2 and a relatively large quadrupole moment of ?19.6?fm2 [25]. This large quadrupole moment leads to the observation of broad lines if the germanium nucleus being observed is not disposed in a symmetric environment. To further complicate matters, the gyromagnetic ratio of all other observable nuclei in group 14 render them sensitive enough to be observed without considerable difficulty. However, the gyromagnetic ratio for the 73Ge nucleus is 0.9332 × 107?rad T?1 s?1 [26–28] which results in an inherent lack of sensitivity despite the fact that the natural abundance of the 73Ge nucleus is 7.7% which is seven times that of 13C (1.1%). At a magnetic field strength of 11.74 T, the 73Ge nucleus resonates at 17.44?MHz and therefore requires a dedicated low-band probe for its observation. In fact, the

References

[1]  R. G. Kidd and H. G. Spinney, “Germanium-73 nuclear magnetic resonance spectra of germanium tetrahalides,” Journal of the American Chemical Society, vol. 95, no. 1, pp. 88–90, 1973.
[2]  A. L. Wilkins, P. J. Watkinson, and K. M. MacKay, “Aspects of germanium-73 nuclear magnetic resonance spectroscopy,” Journal of the Chemical Society, Dalton Transactions, no. 10, pp. 2365–2372, 1987.
[3]  Y. Takeuchi, K. Tanaka, S. Aoyagi, and H. Yamamoto, “A relationship between the half-width of NMR signals and hypercoordination in some phenylgermanes,” Magnetic Resonance in Chemistry, vol. 40, no. 3, pp. 241–243, 2002.
[4]  F. Riedmiller, G. L. Wegner, A. Jockisch, and H. Schmidbaur, “Preparation, structure, and NMR spectroscopy of arylgermanes ArGeH3, Ar2GeH2, and Ar3GeH,” Organometallics, vol. 18, no. 21, pp. 4317–4324, 1999.
[5]  E. Liepi??, I. Zicmane, and E. Lukevics, “ , 17O, 13C NMR Spectra of alkoxygermanes,” Journal of Organometallic Chemistry, vol. 306, no. 3, pp. 327–335, 1986.
[6]  P. Hanson, “Alkyl substituent effects. Part 1. An analysis of alkyl inductive properties in terms of group connectivity,” Journal of the Chemical Society, Perkin Transactions 2, no. 1, pp. 101–108, 1984.
[7]  E. Kup?e, L. M. Ignatovich, and E. Lukevics, “ NMR of hexacoordinate organogermanium compounds,” Journal of Organometallic Chemistry, vol. 372, no. 2, pp. 189–191, 1989.
[8]  C. H. Yoder, T. M. Agee, C. D. Schaeffer, M. J. Carroll, A. J. Fleisher, and A. S. DeToma, “Use of NMR spectroscopy for the study of electronic interactions,” Inorganic Chemistry, vol. 47, no. 22, pp. 10765–10770, 2008.
[9]  C. H. Yoder, T. M. Agee, A. K. Griffith et al., “Use of NMR spectroscopy and X-ray crystallography for the study of electronic interactions in substituted tetrakis(phenyl)-, -(phenoxy)-, and -(thiophenoxy) germanes,” Organometallics, vol. 29, no. 3, pp. 582–590, 2010.
[10]  A. L. Wilkins, P. J. Watkinson, and K. M. MacKay, “Aspects of germanium-73 nuclear magnetic resonance spectroscopy,” Journal of the Chemical Society, Dalton Transactions, no. 10, pp. 2365–2372, 1987.
[11]  R. A. Thomson, A. L. Wilkins, and K. M. Mackay, “Further adventures in germanium NMR,” Phosphorus, Sulfur and Silicon and Related Elements, vol. 150-151, pp. 319–324, 1999.
[12]  E. Liepins, I. Zicmane, and E. Lukevics, “73Ge NMR spectroscopic studies of organogermanium compounds,” Journal of Organometallic Chemistry, vol. 341, no. 1-3, pp. 315–333, 1988.
[13]  M. L. Amadoruge, C. H. Yoder, J. H. Conneywerdy, K. Heroux, A. L. Rheingold, and C. S. Weinert, “ NMR spectral investigations of singly bonded oligogermanes,” Organometallics, vol. 28, no. 10, pp. 3067–3073, 2009.
[14]  C. R. Samanamu, M. L. Amadoruge, C. H. Yoder et al., “Syntheses, structures, and electronic properties of the branched oligogermanes (Ph3Ge)3GeH and (Ph3Ge) 3GeX (X = Cl, Br, I),” Organometallics, vol. 30, no. 5, pp. 1046–1058, 2011.
[15]  C. R. Samanamu, N. F. Materer, and C. S. Weinert, “Absorption, electrochemical, theoretical, and NMR spectral characterization of the germanium neo-pentane abalogue (Me3Ge)4Ge,” Journal of Organometallic Chemistry, vol. 698, no. 1, pp. 62–65, 2012.
[16]  Y. Takeuchi, M. Nishikawa, H. Hachiya, and H. Yamamoto, “High-resolution solid-state MAS NMR spectra of some organogermanes,” Magnetic Resonance in Chemistry, vol. 43, no. 8, pp. 662–664, 2005.
[17]  B. Wrackmeyer, “Applications of NMR parameters,” Annual Reports on NMR Spectroscopy, vol. 57, pp. 1–49, 2006.
[18]  E. Kup?e and E. Lukevics, “Ultrahigh-resolution NMR,” Journal of Magnetic Resonance, vol. 80, no. 2, pp. 359–363, 1988.
[19]  E. A. Williams, “Recent advances in silicon-29 NMR spectroscopy,” Annual Reports on NMR Spectroscopy, vol. 15, pp. 235–289, 1984.
[20]  E. A. Williams and J. D. Cargiolo, “Silicon-29 NMR spectroscopy,” Annual Reports on NMR Spectroscopy, vol. 9, pp. 221–319, 1979.
[21]  B. Wrackmeyer, “NMR Spectroscopy of Tin Compounds,” in Tin Chemistry, A. G. Davies, M. Gielen, K. H. Pannell, and E. R. T. Tiekink, Eds., pp. 17–52, John Wiley & Sons, Chichester, UK, 2008.
[22]  B. Wrackmeyer and K. Horchler, “ -NMR parameters,” Annual Reports on NMR Spectroscopy, vol. 22, pp. 249–306, 1990.
[23]  E. Liepi??, I. Zicmane, and E. Lukevics, “ NMR spectroscopic studies of organogermanium compounds,” Journal of Organometallic Chemistry, vol. 341, no. 1–3, pp. 315–333, 1988.
[24]  Y. Takeuchi and T. Takayama, “ NMR Spectroscopy of organogermanium compounds,” Annual Reports on NMR Spectroscopy, vol. 54, pp. 155–200, 2004.
[25]  P. Pyykk?, “Year-2008 nuclear quadrupole moments,” Molecular Physics, vol. 106, no. 16–18, pp. 1965–1974, 2008.
[26]  C. Brevard and P. Granger, Handbook of High Resolution NMR, John Wiley and Sons, New York, NY, USA, 1981.
[27]  R. K. Harris and B. E. Mann, NMR and the Periodic Table, Academic Press, London, UK, 1978.
[28]  J. Mason, Multinuclear NMR, Plenum Press, New York, NY, USA, 1987.
[29]  K. M. Mackay and R. A. Thomson, “Germanium-73 nuclear magnetic resonance: esoteric study or useful tool?” Main Group Metal Chemistry, vol. 10, no. 2, pp. 83–108, 1987.
[30]  E. Fukushima and S. B. W. Roeder, “Spurious ringing in pulse NMR,” Journal of Magnetic Resonance, vol. 33, no. 1, pp. 199–203, 1979.
[31]  D. Canet, J. Brondeau, J. P. Marchal, and B. Robin-Lherbier, “A convenient method of observing relatively broad nuclear magnetic resonances in the fourier transform-mode,” Organic Magnetic Resonance, vol. 20, no. 1, pp. 51–53, 1982.
[32]  S. L. Patt, “Pulse strategies for the suppression of acoustic ringing,” Journal of Magnetic Resonance, vol. 49, no. 1, pp. 161–163, 1982.
[33]  K. M. MacKay, P. J. Watkinson, and A. L. Wilkins, “Application of proton polarization transfer to a high-spin nucleus, germanium-73,” Journal of the Chemical Society, Dalton Transactions, no. 2, pp. 133–139, 1984.
[34]  P. S. Belton, I. J. Cox, and R. K. Harris, “Experimental sulphur-33 nuclear magnetic resonance spectroscopy,” Journal of the Chemical Society, Faraday Transactions 2, vol. 81, no. 1, pp. 63–75, 1985.
[35]  M. H. Levitt, “Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity,” Journal of Magnetic Resonance, vol. 48, no. 2, pp. 234–264, 1982.
[36]  A. L. Wilkins, R. A. Thomson, and K. M. MacKay, “Suppression of acoustic ringing and baseline roll effects in a low-frequency NMR nucleus- ,” Main Group Metal Chemistry, vol. 13, no. 4, pp. 219–236, 1990.
[37]  P. D. Ellis, “Germanium 73,” in NMR of Newly Accessible Nuclei, P. Laszlo, Ed., p. 18, Academic Press, New York, NY, USA, 1983.
[38]  H. Y. Carr and E. M. Purcell, “Effects of diffusion on free precession in nuclear magnetic resonance experiments,” Physical Review, vol. 94, no. 3, pp. 630–638, 1954.
[39]  S. Meiboom and D. Gill, “Modified spin-echo method for measuring nuclear relaxation times,” Review of Scientific Instruments, vol. 29, no. 8, pp. 688–691, 1958.
[40]  E. L. Hahn, “Spin echoes,” Physical Review, vol. 80, no. 4, pp. 580–594, 1950.
[41]  C. D. Jeffries, “The spin and magnetic moment of Ti47 and Ti49 and the magnetic moment of Ge73,” Physical Review, vol. 92, no. 5, pp. 1262–1263, 1953.
[42]  O. Lutz, A. Schwenk, and G. Zimmermann, “The ratio of the larmor frequency of relative to 2?H and 41?K,” Physics Letters A, vol. 25, no. 9, pp. 653–654, 1967.
[43]  G. Smith, “13C–H and X–X coupling constants of the type (X(CH3)4,” Journal of Chemical Physics, vol. 39, no. 8, pp. 2031–2034, 1963.
[44]  A. Tzalmona, “Measurement of the -proton spin-spin coupling in Ge(CH3)4,” Molecular Physics, vol. 7, pp. 497–498, 1963.
[45]  P. T. Inglefield and L. W. Reeves, “Correlation of nuclear spin-spin coupling constants with atomic number. VI. Exceptions to the rule,” Journal of Chemical Physics, vol. 40, no. 8, pp. 2425–2426, 1964.
[46]  E. A. V. Ebsworth, S. G. Frankiss, and A. G. Robiette, “Proton resonance spectra of some derivatives of monogermane,” Journal of Molecular Spectroscopy, vol. 12, no. 3, pp. 299–300, 1964.
[47]  H. Dreeskamp, “Indirect nuclear spin coupling between protons and elements of Group IV,” Zeitschrift für Naturforschung, vol. A19, no. 1, pp. 139–142, 1964.
[48]  Y. Takeuchi, M. Shimoda, and S. Tomoda, “ and 13C NMR spectra of some methylgermacyclohexanes,” Magnetic Resonance in Chemistry, vol. 23, no. 7, pp. 580–581, 1985.
[49]  S. Aoyagi, K. Tanaka, I. Zicmane, and Y. Takeuchi, “Nuclear magnetic resonance spectra of organogermanium compounds. Part 11. Synthesis and nuclear magnetic resonance spectra of tetramethyldigerma- and octamethyltetragerma-cycloalkanes,” Journal of the Chemical Society, Perkin Transactions 2, no. 12, pp. 2217–2220, 1992.
[50]  Y. Takeuchi, I. Zicmane, G. Manuel, and R. Boukherroub, “NMR spectra of organogermanium compounds. Part XII. and 13C NMR spectra and molecular mechanics calclations of 3-germabicyclo[3. 1. 0]hexanes and related compounds,” Bulletin of the Chemical Society of Japan, vol. 66, no. 6, pp. 1732–1737, 1993.
[51]  E. Liepi??, I. Zicmane, L. M. Ignatovich, and E. Lukevics, “ NMR spectra of 2-thienyl-, 2-furyl- and 2-(4,5-dihydrofuryl)germanes,” Journal of Organometallic Chemistry, vol. 389, no. 1, pp. 23–28, 1990.
[52]  E. Kup?e, E. Lukevics, O. D. Flid, N. A. Viktorov, and T. K. Gar, “ NMR spectra of 1,3-dioxa-6-aza-2-germacyclooctanes,” Journal of Organometallic Chemistry, vol. 372, no. 2, pp. 187–188, 1989.
[53]  Y. Takeuchi, H. Yamamoto, K. Tanaka et al., “Synthesis and structure of tris[(2-alkoxymethyl)phenyl]germanes and tris[(2-methylthiomethyl)phenyl]germane,” Tetrahedron, vol. 54, no. 33, pp. 9811–9822, 1998.
[54]  Y. Takeuchi, M. Nishikawa, and H. Yamamoto, “High-resolution solid-state NMR spectra of hexacoordinated germanium compounds,” Magnetic Resonance in Chemistry, vol. 42, no. 11, pp. 907–909, 2004.
[55]  F. H. Larsen, H. J. Jakobsen, P. D. Ellis, and N. C. Nielsen, “Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors,” Journal of Physical Chemistry A, vol. 101, no. 46, pp. 8597–8606, 1997.
[56]  A. Sutrisno, M. A. Hanson, P. A. Rupar, V. V. Terskikh, K. M. Baines, and Y. Huang, “Exploring the limits of solid-state NMR spectroscopy at ultrahigh magnetic field,” Chemical Communications, vol. 46, no. 16, pp. 2817–2819, 2010.
[57]  R. K. Harris and B. J. Kimber, “ and 13C Nuclear magnetic resonance studies of organosilicon chemistry. III. Compounds containing a direct SiH bond,” Advances in Molecular Relaxation Processes, vol. 8, no. 1, pp. 15–22, 1976.
[58]  T. Harazono, K. Tanaka, and Y. Takeuchi, “Quadrupled coupling constants in the symmetric tetrasubstituted germanes,” Bulletin of the Chemical Society of Japan, vol. 62, no. 3, pp. 919–921, 1989.
[59]  P. J. Watkinson and K. M. Mackay, “On the relation between germanium-73 and other main group IV element NMR chemical shifts,” Journal of Organometallic Chemistry, vol. 275, no. 1, pp. 39–42, 1984.
[60]  Y. Takeuchi, T. Harazono, and N. Kakimoto, “Germanium-73 chemical shifts and spin-lattice relaxation times of some tetrasubstituted germanes,” Inorganic Chemistry, vol. 23, no. 23, pp. 3835–3836, 1984.
[61]  Y. Takeuchi, S. Tomoda, and N. Kakimoto, “NMR spectra of organigermanium compounds 2. 13C NMR spectra of 2-substituted 1-trichlorogermanes,” Magnetic Resonance in Chemistry, vol. 23, no. 2, pp. 140–143, 1985.
[62]  Y. Takeuchi, M. Shimoda, K. Tanaka, S. Tomoda, K. Ogawa, and H. Suzuki, “Nuclear magnetic resonance spectra of organogermanium compounds. Part 4. Nuclear magnetic resonance spectra and molecular mechanics calculations of germacyclohexane, methylgermacyclohexanes, and dimethylgermacyclohexanes,” Journal of the Chemical Society, Perkin Transactions 2, no. 1, pp. 7–13, 1988.
[63]  T. Harazono, K. Tanaka, and Y. Takeuchi, “NMR spectra of organogermanium compounds. 5. Relaxation mechanism of germanium-73 nuclei in tetraalkylgermanes,” Inorganic Chemistry, vol. 26, no. 12, pp. 1894–1897, 1987.
[64]  Y. Takeuchi, Y. Ichikawa, K. Tanaka, and N. Kakimoto, “NMR spectra of organogermanium compounds. VI. NMR spectra and molecular mechanics calculations of 3-methyl and 3, 3-dimethylgermacyclohexanes,” Bulletin of the Chemical Society of Japan, vol. 61, no. 8, pp. 2875–2880, 1988.
[65]  Y. Takeuchi, H. Inagaki, K. Tanaka, and S. Yoshimura, “NMR spectra of organogermanium compounds. 8. , 13C, and 1H spectra of methylvinylgermanes,” Magnetic Resonance in Chemistry, vol. 27, no. 1, pp. 72–74, 1989.
[66]  Y. Takeuchi, K. Tanaka, T. Harazono, K. Ogawa, and S. Yoshimura, “NMR spectra of organogermanium compounds. 7. NMR spectra and MNDO calculations of phenylgermacyclohexanes,” Tetrahedron, vol. 44, no. 24, pp. 7531–7539, 1988.
[67]  Y. Takeuchi, K. Tanaka, T. Harazono, and S. Yoshimura, “NMR spectra of organogermanium compounds. IX. NMR spectra and molecular mechanics calculations of 1-t-butylgermacyclohexanes,” Bulletin of the Chemical Society of Japan, vol. 63, no. 3, pp. 708–715, 1990.
[68]  Y. Takeuchi, K. Tanaka, and T. Harazono, “NMR spectra of organogermanium compounds. X.1) Syntheses, 13C and NMR spectra and molecular mechanics calculations of germacyclopentanes and germacyclopentenes,” Bulletin of the Chemical Society of Japan, vol. 64, no. 1, pp. 91–98, 1991.
[69]  Y. Takeuchi, J. Popelis, G. Manuel, and R. Boukherroub, “NMR spectra of organogermanium compounds. Part XIII. 1H NMR spectra of 3-germabicyclo[3. 1. 0]hexanes and 6-oxa-3-germabicyclo[3. 1. 0]hexanes,” Main Group Metal Chemistry, vol. 18, no. 4, pp. 191–197, 1995.
[70]  M. L. Filleux-Blanchard, N. D. An, and G. Manuel, “ chemical shift measurements of silacyclopentenes confirm the results obtained by 1H and 13C NMR,” Organic Magnetic Resonance, vol. 11, no. 3, pp. 150–151, 1978.
[71]  I. Zicmane, E. Liepins, E. Lukevics, et al., “Germanium-73 and carbon-13 NMR spectra of some tetraalkylgermanes and their carbofunctional derivatives,” Zhurnal Obshchei Khimii, vol. 52, no. 4, pp. 896–899, 1982.
[72]  E. Liepi??, I. Zicmane, and E. Lukevics, “A multinuclear NMR spectroscopy study of alkoxysilanes,” Journal of Organometallic Chemistry, vol. 306, no. 2, pp. 167–182, 1986.
[73]  L. Delmulle and G. P. van der Kelen, “NMR study (proton, carbon-13 and silicon-29) of methylvinylsilane [(CH3)4-xSi(CH=CH2)x] compounds where x = 0, 1, 2, 3, 4,” Journal of Molecular Structure, vol. 55, no. 1, pp. 309–314, 1980.
[74]  E. Liepi??, M. V. Petrova, E. T. Bogoradovsky, and V. S. Zavgorodny, “ , 13C and 1H NMR spectra of methylethynylgermanes,” Journal of Organometallic Chemistry, vol. 410, no. 3, pp. 287–291, 1991.
[75]  M. M?gi, E. Lippmaa, E. Lukevics, et al., “Group IVB organometallic compounds of furan: 13C, , and 119 Sn NMR spectra,” Organic Magnetic Resonance, vol. 9, no. 5, pp. 297–300, 1977.
[76]  E. Lukevics, O. A. Pudova, J. Popelis, et al., “Organometallic deriviatives of furan. XXVII. Nuclear magnetic resonance of furylalkoxy- and furylaminoalkyoxysilanes,” Zhurnal Obshchei Khimii, vol. 51, no. 2, pp. 369–374, 1981.
[77]  N. P. Erchak, J. Popelis, I. Pihler, et al., “Organic furan derivatives. Organosilicon derivatives of 2, 3-dihydrofuran,” Zhurnal Obshchei Khimii, vol. 52, no. 5, pp. 1181–1187, 1982.
[78]  J. Kaufmann, W. Sahm, and A. Schwenk, “Germanium-73 nuclear magnetic resonance studies,” Zeitschrift für Naturforschung A, vol. 26, no. 9, pp. 1384–1389, 1971.
[79]  E. Kup?e and E. Lukevics, “The chemical shift of hexacoordinated germanium in the - anion,” Journal of Magnetic Resonance, vol. 79, no. 2, pp. 325–327, 1988.
[80]  E. Kup?e, E. Upena, M. Tru?ule, and E. Lukevics, “Use of 14N and NMR spectroscopy for elucidation of products of the reaction between GECL4 and KSCN in acetone,” Polyhedron, vol. 8, no. 22, pp. 2641–2644, 1989.
[81]  M. L. Amadoruge and C. S. Weinert, “Singly bonded catenated germanes: eighty years of progress,” Chemical Reviews, vol. 108, no. 10, pp. 4253–4294, 2008.
[82]  C. S. Weinert, “Syntheses, structures and properties of linear and branched oligogermanes,” Dalton Transactions, no. 10, pp. 1691–1699, 2009.
[83]  C. S. Weinert, “Synthetic, structural, and physical aspects of organo-oligogermanes,” Comments on Inorganic Chemistry, vol. 32, no. 2, pp. 55–87, 2011.
[84]  M. L. Amadoruge, A. G. DiPasquale, A. L. Rheingold, and C. S. Weinert, “Hydrogermolysis reactions involving the alpha-germylated nitriles R3GeCH2CN (R = Ph, Pri, But) and germanium amides R3GeNMe2 (R = Pri, But) with Ph3GeH: substituent dependent reactivity and crystal structures of Pri3GeGePh3 and But3Ge[NHC(CH3)CHCN],” Journal of Organometallic Chemistry, vol. 693, no. 10, pp. 1771–1778, 2008.
[85]  M. L. Amadoruge, J. R. Gardinier, and C. S. Weinert, “Substituent effects in linear organogermanium catenates,” Organometallics, vol. 27, no. 15, pp. 3753–3760, 2008.
[86]  M. L. Amadoruge, J. A. Golen, A. L. Rheingold, and C. S. Weinert, “Preparation, structure, and reactivity of discrete branched oligogermanes,” Organometallics, vol. 27, no. 9, pp. 1979–1984, 2008.
[87]  M. L. Amadoruge, E. K. Short, C. Moore, A. L. Rheingold, and C. S. Weinert, “Structural, spectral, and electrochemical investigations of para-tolyl-substituted oligogermanes,” Journal of Organometallic Chemistry, vol. 695, no. 14, pp. 1813–1823, 2010.
[88]  C. R. Samanamu, M. L. Amadoruge, C. S. Weinert, J. A. Golen, and A. L. Rheingold, “Synthesis, structures, and properties of branched oligogermanes,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 186, no. 6, pp. 1389–1395, 2011.
[89]  E. Subashi, A. L. Rheingold, and C. S. Weinert, “Preparation of oligogermanes via the hydrogermolysis reaction,” Organometallics, vol. 25, no. 13, pp. 3211–3219, 2006.
[90]  Y. Takeuchi, M. Nishikawa, K. Tanaka et al., “First observation of high-resolution solid-state NMR spectra of organogermanium compounds,” Chemical Communications, no. 8, pp. 687–688, 2000.
[91]  A. Karipides and D. A. Haller, “The crystal structure of tetraphenylgermanium,” Acta Crystallographica B, vol. 28, no. 10, pp. 2889–2892, 1972.
[92]  G. Ferguson and C. Glidewell, “Tetrabenzylgermanium,” Acta Crystallographica Section C, vol. 52, no. 8, pp. 1889–1891, 1996.
[93]  Y. Takeuchi, M. Nishikawa, K. Tanaka, and T. Takayama, “The first determination of spin-lattice relaxation times (T1) of in the solid state,” Chemistry Letters, vol. 30, no. 6, pp. 572–573, 2001.
[94]  S. V. Verkhovskii, B. Z. Malkin, A. Trokiner et al., “Quadrupole effects on NMR spectra in isotopically controlled Ge single crystals,” Zeitschrift für Naturforschung A, vol. 55, no. 1-2, pp. 105–110, 2000.
[95]  M. Charissé, S. Roller, and M. Dr?ger, “Tetra-p-tolyl-verbindungen p-Tol4Si und p-Tol4Ge: ein beitrag zur konfiguration der tetraaryl-methan-analoga Ar4M (M = C, Si, Ge, Sn, Pb),” Journal of Organometallic Chemistry, vol. 427, no. 1, pp. 23–31, 1992.
[96]  W. L. Jolly and W. M. Latimer, “The heat of oxidation of germanous iodide to germanic acid,” Journal of the American Chemical Society, vol. 74, no. 22, pp. 5752–5754, 1952.
[97]  R. W. Schurko, I. Hung, and C. M. Widdifield, “Signal enhancement in NMR spectra of half-integer quadrupolar nuclei via DFS-QCPMG and RAPT-QCPMG pulse sequences,” Chemical Physics Letters, vol. 379, no. 1-2, pp. 1–10, 2003.
[98]  R. Siegel, T. T. Nakashima, and R. E. Wasylishen, “Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses,” Chemical Physics Letters, vol. 388, no. 4–6, pp. 441–445, 2004.
[99]  L. A. O'Dell and R. W. Schurko, “QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra,” Chemical Physics Letters, vol. 464, no. 1–3, pp. 97–102, 2008.
[100]  E. Kupce and E. Lukevics, “Germanium-73 nuclear magnetic resonance spectra of GeO2 dissolved in water,” Journal of the Chemical Society, Dalton Transactions, no. 7, pp. 2319–2320, 1990.
[101]  J. F. Stebbins, L. S. Du, S. Kroeker et al., “New opportunities for high-resolution solid-state NMR spectroscopy of oxide materials at 21.1- and 18.8-T fields,” Solid State Nuclear Magnetic Resonance, vol. 21, no. 1-2, pp. 105–115, 2002.
[102]  S. V. Verkhovskii, A. Y. Yakubovsky, B. Z. Malkin et al., “Isotopic disorder in Ge single crystals probed with NMR,” Physical Review B, vol. 68, no. 10, Article ID 104201, 2003.
[103]  M. K. Denk, M. Khan, A. J. Lough, and K. Shuchi, “Redetermination of the germanium dichloride complex with 1,4-dioxane at 173?K,” Acta Crystallographica Section C, vol. 54, no. 12, pp. 1830–1832, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133