全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Reagents for the Spectrophotometric Determination of Isoniazid

DOI: 10.5402/2012/869493

Full-Text   Cite this paper   Add to My Lib

Abstract:

Isoniazid is an antitubercular drug, widely used for tuberculosis. Owing to its importance in therapeutics, the present study aims to develop simple method for the spectrophotometric determination of isoniazid (INH). Two novel reagents, epichlorohydrine (ECH) and 4-hydroxyphenaylchloride (HPC) are used for the spectrophotometric determination of INH. Based on the nucleophilic substitution reactions of INH with EPI & HPC in basic medium, rapid, simple, inexpensive, precise, and accurate visible spectrophotometric method is proposed for the determination of INH in bulk drug and in formulations. Method involves the reaction of INH with EPI and HPC in basic medium to form yellow-colored chromogen, measuring the absorbances at 405 and 402?nm for INH-EPI & INH-HPC, respectively. The optimum experimental conditions have been studied. The absorbance was found to increase linearly with the concentration of the drug and formed the basis for quantification. The calibration graphs were linear from 2.00–22.00?μg?mL?1 and 20.00–120.00?μg?mL?1 for INH-EPI & INH-HPC, respectively. The apparent molar absorptivity and Sandell's sensitivity are calculated to be 0 . 5 1 × 1 0 4 & 0 . 1 0 × 1 0 4 ?L mol?1?cm?1 and 0.027 & 0.134?μg?cm?2 for INH-EPI & INH-HPC, respectively. The procedure is used to determine INH in pharmaceutical products. The associated pharmaceutical materials do not interfere in the measurements. 1. Introduction The enhanced prevalence of infectious diseases threatens world population. Tuberculosis (TB) is characterized as a chronic bacterial infection caused by a germ called Mycobacterium tuberculosis. TB is contagious and spreads through the air when a person with TB of the lungs or throat coughs, sneezes, or talks. Worldwide statistics on tuberculosis surprisingly reveals that, one-third of the world’s population, over 2 billion people, carry the bacillus that causes TB and 2 million people die of the disease each year. Tuberculosis is on the increase in recent years, largely owing to HIV infection, immigration, increased trade, and globalization [1]. Among the many drugs discovered for the treatment of TB, isoniazid (INH) is one of the powerful drug candidates. The discovery of INH was based on the nicotinamide activity against tubercle bacilli in the animal model observed by Chorine in 1945 [2] and the reshuffling of chemical groups in the thiosemicarbazone [3, 4]. INH represented a major milestone in the chemotherapy of TB because it is highly active, inexpensive, and without significant side effects [5, 6]. INH keeps on to be the cornerstone of all

References

[1]  K. C. Smith, L. Armitige, and A. Wanger, “A review of tubercolosis: reflections on the past, present and future of a global epidemic disease,” Expert Review of Anti-Infective Therapy, vol. 1, no. 3, pp. 483–491, 2003.
[2]  V. Chorine, “Médecine expérimentale—Action de l'amide nicotinique sur les bacilles du genre mycobacterium,” Comptes Rendu Hebdomadaires des Séances de l'Académie des Sciences, vol. 220, no. 4, pp. 150–151, 1945.
[3]  J. Bernstein, W. A. Lott, B. A. Steinberg, and H. L. Yale, “Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (Nydrazid) and related compounds,” The American Review of Tuberculosis, vol. 65, no. 4, pp. 357–364, 1952.
[4]  H. A. Offe, W. Siefken, and G. Domagk, “The tuberculostatic activity of hydrazine derivatives from pyridine carboxylic acids and carbonyl compounds,” Zeitschrift für Naturforschung B, vol. 7, pp. 462–468, 1952.
[5]  D. L. Griffiths, A. G. Quinlan, and H. J. Richards, “Isoniazid in treatment of bone and joint tuberculosis: a review of 20 cases,” The British Medical Journal, vol. 1, no. 4875, pp. 1355–1359, 1954.
[6]  Y. Zhang, “The magic bullets and tuberculosis drug targets,” Annual Review of Pharmacology and Toxicology, vol. 45, pp. 529–564, 2005.
[7]  H. H. Fox, “The chemical approach to the control of tuberculosis,” Science, vol. 116, no. 3006, pp. 129–134, 1952.
[8]  D. Jenkins and F. F. Davidson, “Isoniazid chemoprophylaxis of tuberculosis,” California medicine, vol. 116, no. 4, pp. 1–5, 1972.
[9]  A. M. El-Brashy and S. M. El-Ashry, “Colorimetric and titrimetric assay of isoniazid,” Journal of Pharmaceutical and Biomedical Analysis, vol. 10, no. 6, pp. 421–426, 1992.
[10]  C. J. Shishoo and M. B. Devani, “Nonaqueous titrimetric determination of isoniazid in presence of excess of sodium p-aminosalicylate in dosage forms,” Journal of Pharmaceutical Sciences, vol. 59, no. 1, pp. 92–93, 1970.
[11]  A. Safavi, M. A. Karimi, M. R. H. Nezhad, R. Kamali, and N. Saghir, “Sensitive indirect spectrophotometric determination of isoniazid,” Spectrochimica Acta—Part A, vol. 60, no. 4, pp. 765–769, 2004.
[12]  M. E. El-Kommos and A. S. Yanni, “Spectrophotometric determination of isoniazid using 6,7-dichloroquinoline-5,8-dione,” Analyst, vol. 113, no. 7, pp. 1091–1095, 1988.
[13]  P. Nagaraja, K. Sunitha, R. Vasantha, and H. Yathirajan, “Novel method for the spectrophotometric determination of isoniazid and ritodrine hydrochloride,” Turkish Journal of Chemistry, vol. 26, no. 5, pp. 743–750, 2002.
[14]  J. J. Vallon, A. Badinand, and C. Bichon, “Determination of isoniazid, N acetylisoniazid and isonicotinic acid by polarography with superimposed sinusoidal tension,” Analytica Chimica Acta, vol. 78, no. 1, pp. 93–98, 1975.
[15]  V. J. Jennings, A. Dodson, and A. Harrison, “Coulometric microtitration of arsenic(III) and isoniazid using a vitreous carbon generating electrode,” Analyst, vol. 99, no. 1177, pp. 145–148, 1974.
[16]  J. T. Stewart, I. L. Honigberg, and J. P. Brant, “Liquid chromatography in pharmaceutical analysis. V. Determination of an isoniazid pyridoxine hydrochloride mixture,” Journal of Pharmaceutical Sciences, vol. 65, no. 10, pp. 1536–1539, 1976.
[17]  J. Bartos, “Elements of functional organic fluorometry. VII. Fluorometry of pyridine derivatives,” Annales Pharmaceutiques Francaises, vol. 29, no. 1, pp. 71–73, 1971.
[18]  S. T. Sulaiman and D. Amin, “Spectroscopic studies of isonicotinoyl-, nicotinoyl-, and piconoylhydrazines with chloranil,” Microchemical Journal, vol. 28, no. 3, pp. 328–330, 1983.
[19]  P. R. Shah and R. R. Raje, “Hydrazones of isoniazid for colorimetric analysis,” Journal of Pharmaceutical Sciences, vol. 66, no. 2, pp. 291–292, 1977.
[20]  N. F. Poole and A. E. Meyer, “Comparison of new chemical method of determining isonicotinoyl hydrazide in serum with microbiological assay,” Proceedings of the Society for Experimental Biology and Medicine, vol. 98, no. 2, pp. 375–377, 1958.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133