|
ISRN Biomarkers 2014
Evaluation of CD25+CD4+ Regulatory T-Lymphocyte Subpopulations in Coronary Artery Diseases PatientsDOI: 10.1155/2014/562587 Abstract: Background. The development of atherosclerosis may be associated with a deficiency in the regulatory T-cells, which should serve a protective function and inhibit the accumulation of lymphocytes and macrophages. The aim of this study was the analysis of the T-lymphocyte subpopulations, particularly CD4+CD25+ regulatory T-cells in patients with different form of coronary artery disease. Materials and Methods. In the study 30 patients with stable coronary heart disease and 30 patients with unstable coronary heart disease take part. Lymphocytes subpopulations were measured with flow cytometry technique. The analysis of the treated cells parameters was performed with the use of CellQuest program. Results. We have observed statistically significant increase in activated lymphocytes subpopulations in patients with unstable coronary artery disease in comparison to stable group and significant decrease in CD25+, CD25/CD3+, and CD25/CD4+ subpopulations in unstable patients comparing to stable patients group. Conclusions. A strong interest in regulatory lymphocytes is due to their possible therapeutic use as a factor in modifying the immune response in various diseases. Questions regarding the role of regulatory T-cells in the development of atherosclerosis remain unclear. Mechanisms of the regulatory T-cells impact on suppression of atherosclerosis need more experiments to be done. 1. Introduction Atherosclerosis is a multifactorial process, which includes interactions between endothelial cells, macrophages, muscle cells, and lymphocytes. The recognition of atherosclerosis as a chronic inflammatory disease contributed to undertaking the research, in which a lot of systemic inflammatory response markers were evaluated for their usefulness in the atherosclerosis progression diagnosis and detecting high-risk acute coronary events. The importance of CRP, fibrinogen, and IL-6 is best known. Other potential factors are the total number of white blood cell count (WBC), the concentration of serum amyloid-A, interleukin, D-dimer, tissue plasminogen activator-1, TNF-α, and pregnancy-associated plasma protein-A (PAPP-A) [1]. The immune response in atherosclerosis begins with the presentation of antigen T-lymphocytes, helper, which induce further immune response involving T-cells and B-cells. Fragments of oxidized low density lipoprotein oxLDL are the major antigens stimulating the organism to the development of inflammatory reaction. Yet we know that some subpopulations of T-lymphocytes lead to increased inflammatory response (Th1) and others to its inhibition (Th2).
|