全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Zoology  2013 

Short-Term Memory of the Amplitude of Body Rotation in Orienting Behavior of African Clawed Frog (Xenopus laevis)

DOI: 10.1155/2013/734040

Full-Text   Cite this paper   Add to My Lib

Abstract:

African clawed frog (Xenopus laevis) can orient its body toward the prey by analyzing the direction of approaching water waves. Xenopus accurately orients toward the source of the stimulus when the stimulus is generated several cm away from its body. However, although Xenopus orientation behavior fluctuates when the stimulus is generated very near or above its body, the amplitude of the body rotation in the orienting behavior was affected by the preceding orienting behavior that had been performed several seconds before. In particular, the amplitude of the rotation in response to the stimulus applied above the body was positively correlated with that of the preceding rotation behavior in response to a stimulus generated several cm away from the body, indicating that Xenopus tends to repeat the preceding behavior if the direction of the stimulus is ambiguous. The results presented show the evidence that Xenopus can retain the amplitude of the rotation of the preceding orienting behavior for several seconds. 1. Introduction African clawed frogs (Xenopus laevis) capture living insects on the water surface by analyzing the directions of water waves produced by the movement of the prey [1]. During this orienting behavior, water waves are predominantly detected by lateral lines that are dispersed over the frog’s body. Lateral lines consist of 160–300 stitches, each of which contains hair cells (mechanoreceptors) [2, 3]. When the frog detects water waves produced by the prey using lateral lines, it rapidly orients its body toward the source of the waves. Characteristics of this orienting behavior by African clawed frogs have been analyzed in many previous studies [4–9]. Elepfandt [4] first analyzed the accuracy of African clawed frog’s orienting behavior and showed that African clawed frogs could accurately orient their bodies toward the direction of the wave source. In this study, the distance between the wave source and the frog’s body was nearly constant (10–12?cm). Subsequent studies have shown that African clawed frogs performed the orienting behavior accurately even if the distance between the frog’s body and the wave source was altered [8, 9]. Although African clawed frogs performed the orienting behavior very accurately when the stimulus was presented several cm away from its body, it is unknown (1) how African clawed frog orients its body when the direction of the wave source is difficult to determine, such that the stimulus is generated very near or directly above its body, and (2) what parameters of the stimulus or frog’s behavior affect frog’s

References

[1]  A. Elepfandt, “Central organization of wave localization in the clawed frog, Xenopus laevis. I. Involvement and bilateral organization of the midbrain,” Brain, Behavior and Evolution, vol. 31, no. 6, pp. 349–357, 1988.
[2]  A. Elepfandt, “Processing of wave patterns in the lateral line system parallels to auditory processing,” Acta Biologica Hungarica, vol. 39, no. 2-3, pp. 251–265, 1988.
[3]  C. Mohr and P. G?rner, “Innervation patterns of the lateral line stitches of the clawed frog, Xenopus laevis, and their reorganization during metamorphosis,” Brain, Behavior and Evolution, vol. 48, no. 2, pp. 55–69, 1996.
[4]  A. Elepfandt, “Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis Daudin) with intact or with lesioned lateral line system,” Journal of Comparative Physiology A, vol. 148, no. 4, pp. 535–545, 1982.
[5]  P. G?rner, P. Moller, and W. Weber, “Lateral-line input and stimulus localization in the African clawed toad Xenopus sp.,” Journal of Experimental Biology, vol. 108, pp. 315–328, 1984.
[6]  B. Claas, H. Münz, and P. G?rner, “Reaction to surface waves by Xenopus laevis Daudin. Are sensory systems other than the lateral line involved?” Journal of Comparative Physiology A, vol. 172, no. 6, pp. 759–765, 1993.
[7]  B. Claas, “Removal of eyes in early larval stages alters the response of the clawed toad, Xenopus laevis, to surface waves,” Physiology and Behavior, vol. 56, no. 3, pp. 423–428, 1994.
[8]  B. Claas and H. Münz, “Analysis of surface wave direction by the lateral line system of Xenopus: source localization before and after inactivation of different parts of the lateral line,” Journal of Comparative Physiology A, vol. 178, no. 2, pp. 253–268, 1996.
[9]  B. Claas and J. Dean, “Prey-capture in the African clawed toad (Xenopus laevis): comparison of turning to visual and lateral line stimuli,” Journal of Comparative Physiology A, vol. 192, no. 10, pp. 1021–1036, 2006.
[10]  G. Okazawa and S. Funahashi, “Short-term memory observed in the orienting behavior of Xenopus laevis,” Neuroscience Research, vol. 61, p. S117, 2008.
[11]  J. M. P. Franosch, M. Lingenheil, and J. L. Van Hemmen, “How a frog can learn what is where in the dark,” Physical Review Letters, vol. 95, no. 7, Article ID 078106, pp. 1–4, 2005.
[12]  J. M. P. Franosch, M. C. Sobotka, A. Elepfandt, and J. L. Van Hemmen, “Minimal model of prey localization through the lateral-line system,” Physical Review Letters, vol. 91, no. 15, Article ID 158101, 4 pages, 2003.
[13]  K. E. Zittlau, B. Claas, and H. Münz, “Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin,” Journal of Comparative Physiology A, vol. 158, no. 4, pp. 469–477, 1986.
[14]  W. Plassmann, “Central neuronal pathways in the lateral line system of Xenopus laevis,” Journal of Comparative Physiology A, vol. 136, no. 3, pp. 203–213, 1980.
[15]  A. Elepfandt, “Central organization of wave localization in the clawed frog, Xenopus laevis. II. Midbrain topology for wave directions,” Brain, Behavior and Evolution, vol. 31, no. 6, pp. 358–368, 1988.
[16]  M. J. Titmus, H. J. Tsai, R. Lima, and S. B. Udin, “Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study,” Neuroscience, vol. 91, no. 2, pp. 753–769, 1999.
[17]  E. A. Dudkin and E. R. Gruberg, “Nucleus isthmi enhances calcium influx into optic nerve fiber terminals in Rana pipiens,” Brain Research, vol. 969, no. 1-2, pp. 44–52, 2003.
[18]  E. Gruberg, E. Dudkin, Y. Wang et al., “Influencing and interpreting visual input: the role of a visual feedback system,” Journal of Neuroscience, vol. 26, no. 41, pp. 10368–10371, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133