全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Zoology  2012 

Postmortem Health and Pollution Investigations on Harbor Seals (Phoca vitulina) of the Islands Helgoland and Sylt

DOI: 10.5402/2012/106259

Full-Text   Cite this paper   Add to My Lib

Abstract:

Helgoland and Sylt are important centers of tourism in the North Sea. Harbor and grey seals are one reason for the attraction of these islands. However, little is known about these local seal groups. The present postmortem health and pollution study describes a multiparameter investigation of five ill harbor seals which were shot for animal welfare reasons. Firstly, results of pathology and blood investigations support the bad prognosis of survival made in the field. Signs of inflammation in organs, malnutrition, a high-stress level, and reduced thyroid activity were found. Secondly, metal and organic contaminants were investigated. Metal pollutants in blood, liver, muscle, and kidney tissue were not elevated. Lead and mercury concentrations showed a decreased level compared to former studies. Additionally, interesting insights were found for several organic contaminants in comparison with other studies. The Helgoland seals may be influenced by the contaminants of the Elbe plume. 1. Introduction The ongoing and increasing use of the North Sea and its unique Wadden Sea areas for fishing, offshore wind parks, and as dumping site for dredged material containing various pollutants represents the main anthropogenic threat to this ecosystem. Besides determining contamination levels of selected environmental compartments such as sediments or the related water column, measuring body burdens of marine animals remains a widely established environmental assessment strategy [1–7]. In this context, marine mammals such as harbor seals (Phoca vitulina) are accepted indicators, in particular for medium and long-term ecosystem changes, due to their long lifespan and their role as top predators within the marine food web [8]. Correlations between bioaccumulation of environmental contaminants in the tissues of marine mammals and immunosuppressive effects enhancing the animals’ vulnerability to infectious diseases or pathogens have been described [9–11]. The tissue of seals found dead occasionally along the Wadden Sea coast line represents an important sample material which could be used for pathological investigations and for estimating contaminant body burdens in monitoring programs. However, to describe complex parameters such as the individual health status of marine mammals, an informative set of investigations has to be performed. Recently, we described a study including metals, organic contaminants, selected marker proteins as well as a number of immunological and clinical chemistry parameters to assess the health status of individual marine mammals based on blood

References

[1]  V. N. de Jonge, M. Elliott, and V. S. Brauer, “Marine monitoring: Its shortcomings and mismatch with the EU Water Framework Directive's objectives,” Marine Pollution Bulletin, vol. 53, no. 1, pp. 5–19, 2006.
[2]  S. Fahrenholtz, S. Griesel, D. Pr?frock, and A. Kakuschke, “Essential and non-essential elements in tissues of harbour porpoises (Phocoena phocoena) stranded on the coasts of the North and Baltic Seas between 2004–2006,” Journal of Environmental Monitoring, vol. 11, no. 5, pp. 1107–1113, 2009.
[3]  S. Griesel, A. Kakuschke, U. Siebert, and A. Prange, “Trace element concentrations in blood of harbor seals (Phoca vitulina) from the Wadden Sea,” Science of the Total Environment, vol. 392, no. 2-3, pp. 313–323, 2008.
[4]  A. Kakuschke and A. Prange, “The influence of metal pollution on the immune system—a potential stressor for marine mammals in the North Sea,” International Journal of Comparative Psychology, vol. 20, pp. 179–193, 2007.
[5]  R. J. Law, P. Bersuder, L. K. Mead, and P. D. Jepson, “PFOS and PFOA in the livers of harbour porpoises (Phocoena phocoena) stranded or bycaught around the UK,” Marine Pollution Bulletin, vol. 56, no. 4, pp. 792–797, 2008.
[6]  J. Mi, A. Orbea, N. Syme, M. Ahmed, M. P. Cajaraville, and S. Cristobal, “Peroxisomal proteomics, a new tool for risk assessment of peroxisome proliferating pollutants in the marine environment,” Proteomics, vol. 5, no. 15, pp. 3954–3965, 2005.
[7]  S. M?ssner and K. Ballschmiter, “Marine mammals as global pollution indicators for organochlorines,” Chemosphere, vol. 34, no. 5-7, pp. 1285–1296, 1997.
[8]  The Trilateral Wadden Sea Cooperation, The Trilateral Monitoring and Assessment Program (TMAP). Wadden Sea Plan 2010, Common Wadden Sea Secretariat, Wilhelmshaven, Germany, 2010.
[9]  P. M. Bennett, P. D. Jepson, R. J. Law et al., “Exposure to heavy metals and infectious disease mortality in harbour porpoises from England and Wales,” Environmental Pollution, vol. 112, no. 1, pp. 33–40, 2001.
[10]  P. D. Jepson, P. M. Bennett, C. R. Allchin et al., “Investigating potential associations between chronic exposure to polychlorinated biphenyls and infectious disease mortality in harbour porpoises from England and Wales,” Science of the Total Environment, vol. 243-244, pp. 339–348, 1999.
[11]  U. Siebert, C. Joiris, L. Holsbeek et al., “Potential relation between mercury concentrations and necropsy findings in cetaceans from German waters of the North and Baltic Seas,” Marine Pollution Bulletin, vol. 38, no. 4, pp. 285–295, 1999.
[12]  A. Kakuschke, E. Valentine-Thon, S. Griesel et al., “First health and pollution study on harbor seals (Phoca vitulina) living in the German Elbe estuary,” Marine Pollution Bulletin, vol. 60, no. 11, pp. 2079–2086, 2010.
[13]  K. Abt, Meeress?ugerfunde an den Küsten Schleswig-Holsteins 2010, Nationalparkverwaltung im Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein, Kiel, Germany, 2011.
[14]  K. Abt, Robbenz?hlungen im schleswig-holsteinischen Wattenmeer 2010, Nationalparkverwaltung im Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein, Kiel, Germany, 2011.
[15]  K. Abt and J. Engler, “Rapid increase of the grey seal (Halichoerus grypus) breeding stock at Helgoland,” Helgoland Marine Research, vol. 63, no. 2, pp. 177–180, 2009.
[16]  D. Adelung and G. Müller, Forschungsverbund MINOSplus—Weiterführende Arbeiten an Seev?geln und Meeress?ugern zur Bewertung von Offshore-Windkraftanlagen, Teilvorhaben TP6 —“Seehunde in See”—Untersuchungen zur r?umlichen und zeitlichen Nutzung der Nordsee durch Seehunde im Zusammenhang mit der Entwicklung von Offshore-Windenergieanlagen, Ministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Universit?t Kiel, Germany, 2008.
[17]  U. Siebert, P. Wohlsein, K. Lehnert, and W. Baumg?rtner, “Pathological Findings in Harbour Seals (Phoca vitulina): 1996–2005,” Journal of Comparative Pathology, vol. 137, no. 1, pp. 47–58, 2007.
[18]  U. Siebert, H. Seibel, I. Hasselmeier et al., Untersuchungen zum Gesundheitszustand von Robben in Schleswig-Holstein im Jahr 2009, Bericht an das Ministerium für Umwelt, Natur und Landwirtschaft des Landes Schleswig-Holstein und an das Landesamt für den Nationalpark Schleswig-Holsteinisches Wattenmeer, Kiel, Germany, 2009.
[19]  A. Kakuschke, H. B. Erbsloeh, S. Griesel, and A. Prange, “Acute phase protein haptoglobin in blood plasma samples of harbour seals (Phoca vitulina) of the Wadden Sea and of the isle Helgoland,” Comparative Biochemistry and Physiology B, vol. 155, no. 1, pp. 67–71, 2010.
[20]  M. Grebe, Isolierung und Charakterisierung von Transferrin-Glykoformen aus Blutproben von Seehunden mittels multidimensionaler chromatographischer Verfahren und molekül- und element-spezifischer massenspektrometrischer Detektion, Ph.D. thesis, Universit?t Hamburg, Fakult?t für Mathematik, Informatik und Naturwissenschaften, Hamburg, Germany, 2011.
[21]  M. Grebe, D. Pr?frock, A. Kakuschke, J. A. C. Broekaert, and A. Prange, “Metallomics approach for the identification of the iron transport protein transferrin in the blood of harbour seals (Phoca vitulina),” Metallomics, vol. 2, no. 10, pp. 683–693, 2010.
[22]  M. Grebe, D. Pr?frock, A. Kakuschke, J. A. C. Broekaert, and A. Prange, “Absolute quantification of transferrin in blood samples of harbour seals using HPLC-ICP-MS,” Metallomics, vol. 3, no. 2, pp. 176–185, 2011.
[23]  H. Rosenfeld, S. Lassen, and A. Prange, “Characterization of haptoglobin in the blood plasma of harbor seals (Phoca vitulina),” Journal of Proteome Research, vol. 8, no. 6, pp. 2923–2932, 2009.
[24]  A. Wargel, Entwicklung eines Zellkulturmodells zur Untersuchung des Schadstoffeinflusses auf Seehunde (Phoca vitulina), Ph.D. thesis, Leuphana Universit?t Lüneburg, Institut für Umweltchemie, Lüneburg, Germany, 2011.
[25]  A. Kakuschke, E. Valentine-Thon, S. Griesel, S. Fonfara, U. Siebert, and A. Prange, “Immunological impact of metals in harbor seals (Phoca vitulina) of the North Sea,” Environmental Science and Technology, vol. 39, no. 19, pp. 7568–7575, 2005.
[26]  A. Kakuschke, E. Valentine-Thon, S. Fonfara et al., “Metal-induced impairment of the cellular immunity of newborn harbor seals (Phoca vitulina),” Archives of Environmental Contamination and Toxicology, vol. 55, no. 1, pp. 129–136, 2008.
[27]  A. Kakuschke, E. Valentine-Thon, S. Griesel et al., “Blood metal levels and metal-influenced immune functions of harbour seals in captivity,” Marine Pollution Bulletin, vol. 56, no. 4, pp. 764–769, 2008.
[28]  M. E. Lander, J. T. Harvey, and F. M. D. Gulland, “Hematology and serum chemistry comparisons between free-ranging and rehabilitated harbor seal (Phoca vitulina richardsi) pups,” Journal of Wildlife Diseases, vol. 39, no. 3, pp. 600–609, 2003.
[29]  L. C. McConnell and R. W. Vaughan, “Some blood values in captivity and free-living common seals (Phoca vitulina),” Aquatic Mammals, vol. 10, pp. 9–13, 1983.
[30]  A. Kakuschke, D. Pr?frock, and A. Prange, “C-reactive protein in blood plasma and serum samples of harbour seals (Phoca vitulina),” submitted.
[31]  D. A. Fauquier, J. A. K. Mazet, F. M. D. Gulland, T. R. Spraker, and M. M. Christopher, “Distribution of tissue enzymes in three species of pinnipeds,” Journal of Zoo and Wildlife Medicine, vol. 39, no. 1, pp. 1–5, 2008.
[32]  D. J. S. Aubin, “Endocrinology,” in Handbook of Marine Mammal Medicine, L. A. Dierauf and F. M. D. Gulland, Eds., pp. 165–192, CRC Press, Boca Raton, Fla, USA, 2001.
[33]  C. Oki and S. Atkinson, “Diurnal patterns of cortisol and thyroid hormones in the Harbor seal (Phoca vitulina) during summer and winter seasons,” General and Comparative Endocrinology, vol. 136, no. 2, pp. 289–297, 2004.
[34]  AMAP, “Heavy metals. Arctic monitoring and assessment program,” in AMAP Assessment Report: Arctic Pollution Issues, chapter 7, AMAP, Oslo, Norway, 1998.
[35]  H. E. Drescher, U. Harms, and E. Huschenbeth, “Organochlorines and heavy-metals in harbor seal Phoca vitulina from German North Sea Coast,” Marine Biology, vol. 41, pp. 99–106, 1977.
[36]  U. Harms, H. E. Drescher, and E. Huschenbeth, “Further data on heavy metals and organochlorines in marine mammals from German Coastal Waters,” Meeresforschung-Reports on Marine Research, vol. 26, pp. 153–161, 1978.
[37]  OSPAR, Quality Status Report 2000, OSPAR Commission, London, UK, 2000.
[38]  L. Weijs, K. Das, U. Siebert et al., “Concentrations of chlorinated and brominated contaminants and their metabolites in serum of harbour seals and harbour porpoises,” Environment International, vol. 35, no. 6, pp. 842–850, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133