全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Pulmonary Artery Pulsatility by Multidetector Computed Tomography in Patients Affected by Chronic Obstructive Pulmonary Disease and Pulmonary Hypertension: Preliminary Data

DOI: 10.1155/2013/808615

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim was to assess if computed tomography is able to measure pulmonary artery pulsatility in patients affected by chronic obstructive pulmonary disease and to ascertain whether pulsatility is different in patients with and without pulmonary hypertension and whether it is related to haemodynamics. We selected two groups of patients, the first one with pulmonary hypertension and the second one without. In patient with hypertension, pulmonary artery pressure and resistance were increased with the increased diameters (transverse 36 ± 5?mm and axial 38 ± 4?mm versus 22 ± 3 and 25 ± 5, resp.), the increased cross-sectional area (10 ± 08 versus 4 ± 1?cm2), and the reduced pulsatility (21 ± 7 versus 10% ± 5%). Arterial stretching was decreased in patients with hypertension (10 ± 5 versus 21% ± 7%) and significantly related to pulmonary vascular resistances and pressure. Cardiac output measured by tomography was significantly related to that obtained by Fick method and was not different in the two groups. The diameters allow to identify patients with PH, assuming a cut-off of 28?mm and assuming a pulsatility of right branch of 26% as well. These preliminary observations indicate tomography as a suitable technique, being able to measure the pulsatility and the dimensions of the arteries and the right ventricular functional parameters. 1. Introduction The assessment of pulmonary hypertension (PH) during the chronic obstructive pulmonary disease (COPD) is important, since PH worsens quality of life, prognosis, effort tolerance, and outcome in acute respiratory failure [1–3]. Precapillary PH can be seen in 30% to 43% of patients affected by COPD, reaching values higher than 45?mmHg in 5% [1–3]. PH is determined by both functional vasoconstriction and vessels remodeling [3–5] that determine the right ventricular afterload leading to effort intolerance, poor quality of life, cardiac failure, and reduced life expectancy. The assessment of pulsatility (Puls) of pulmonary artery (PA) in PH looks like a promising tool, since it looks related to severity, progression of disease, functional capacity, prognosis, and survival [6–9]. The invasive right heart catheterization (RHC) is the gold standard for the diagnosis of PH, and the assessment of reversibility of PH with vasodilators, the measure of Puls by intravascular ultrasound (IVU) [10–14]. The noninvasive cardiac echocardiography (US) allows the measurement of the pulmonary artery dimensions, the right ventriculare shape, the ejection fraction, and the noninvasive estimation of the systolic pulmonary artery pressure

References

[1]  G. Simonneau, N. Galie’, and L. Rubin, “Clinical classification of pulmonary arterial hypertension,” Journal of the American College of Cardiology, vol. 43, no. 12, supplement, pp. s5–s12, 2004.
[2]  R. Kessler, M. Faller, E. Weitzenblum et al., ““Natural history” of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 2, pp. 219–224, 2001.
[3]  R. Naejie and A. Barbera, “Pulmonary hypertension associated with COPD,” Critical Care, vol. 5, pp. 286–291, 2001.
[4]  O. Firǎ-Mladinescu, L. Vasile, C. Suciu et al., “Some aspects of pulmonary vascular remodelling in smokers and patients with mild COPD,” Pneumologia, vol. 57, no. 1, pp. 7–16, 2008.
[5]  S. Santos, V. I. Peinado, J. Ramirez, et al., “Chracterization of pulmonary vascular remodelling in smokers,” European Respiratory Journal, vol. 19, no. 4, pp. 632–638, 2002.
[6]  K. W. Kang, H. J. Chang, Y. J. Kim, B. W. Choi, et al., “Cardiac magnetic resonance imaging-derived pulmonary artery distensibility index correlates with pulmonary artery stiffness and predicts functional capacity in patients with pulmonary arterial hypertension,” Circulation Journal, vol. 75, no. 9, pp. 2244–2251, 2011.
[7]  Y. Fukumoto, “Pulmonary artery distensibility index is a non-invasive useful marker of pulmonary arterial hypertension progression,” Circulation Journal, vol. 75, no. 9, pp. 2058–2059, 2011.
[8]  A. J. Swift, S. Rajaram, R. Condliffe, D. Capener, et al., “Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension,” Investigative Radiology, vol. 47, no. 10, pp. 571–577, 2012.
[9]  C. T. J. Gan, J. W. Lankhaar, N. Westerhof et al., “Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension,” Chest, vol. 132, no. 6, pp. 1906–1912, 2007.
[10]  J. Rodés-Cabau, E. Domingo, A. Román, et al., “Intravascular ultrasound of the elastic pulmonary arteries: a new approach for the evaluation of primary pulmonary hypertension,” Heart, vol. 89, no. 3, pp. 311–315, 2003.
[11]  A. C. Borges, R. Wensel, C. Opitz, U. Bauer, G. Baumann, and F. X. Kleber, “Relationship between haemodynamics and morphology in pulmonary hypertension. A quantitative intravascular ultrasound study,” European Heart Journal, vol. 18, no. 12, pp. 1988–1994, 1997.
[12]  C. E. Weinberg and J. R. Hertzberg, “Use of intravascular ultrasound to measure local compliance of the pediatric pulmonary artery: in vitro studies,” Journal of the American Society of Echocardiography, vol. 15, no. 12, pp. 1507–1514, 2002.
[13]  E. Domingo, R. Aguilar, M. López-Meseguer, G. Teixidó, M. Vazquez, and A. Roman, “New concepts in the invasive and non invasive evaluation of remodelling of the right ventricle and pulmonary vasculature in pulmonary arterial hypertension,” Open Respiratory Medicine Journal, vol. 3, pp. 31–37, 2009.
[14]  E. M. Lau, N. Iyer, R. Ilsar, B. P. Bailey, M. R. Adams, and D. S. Celermajer, “Abnormal pulmonary artery stiffness in pulmonary arterial hypertension: in vivo study with intravascular ultrasound,” PLoS ONE, vol. 7, no. 3, Article ID e33331, 2012.
[15]  M. R. Fisher, G. J. Criner, A. P. Fishman et al., “Estimating pulmonary artery pressures by echocardiography in patients with emphysema,” European Respiratory Journal, vol. 30, no. 5, pp. 914–921, 2007.
[16]  S. Ghio, A. S. Pazzano, C. Klersy et al., “Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension,” American Journal of Cardiology, vol. 107, no. 4, pp. 628–632, 2011.
[17]  C. Ginghina, D. Muraru, A. Vladaia, et al., “Doppler flow patterns in the evaluation of pulmonary hypertension,” Romanian Journal of Internal Medicine, vol. 47, no. 2, pp. 109–121, 2009.
[18]  A. Vonk-Noordegraaf, J. T. Marcus, S. Holverda, B. Roseboom, and P. E. Postmus, “Early changes of cardiac structure and function in COPD patients with mild hypoxemia,” Chest, vol. 127, no. 6, pp. 1898–1903, 2005.
[19]  R. W. W. Biederman, “Cardiovascular magnetic resonance imaging as applied to patients with pulmonary arterial hypertension,” International Journal of Clinical Practice, vol. 63, no. 162, pp. 20–35, 2009.
[20]  N. Creuzé, S. Hoette, and D. Chemla, “Magnetic resonance imaging and pulmonary hypertension: towards an improved evaluation of right heart and pulmonary circulation,” Presse Medicale, vol. 40, supplement 1, pp. 1S21–1S27, 2011.
[21]  C. Jardim, C. E. Rochitte, M. Humbert et al., “Pulmonary artery distensibility in pulmonary arterial hypertension: an MRI pilot study,” European Respiratory Journal, vol. 29, no. 3, pp. 476–481, 2007.
[22]  J. B. A. Haimovici, B. Trotman-Dickenson, E. F. Halpern et al., “Relationship between pulmonary artery diameter at computed tomography and pulmonary artery pressures at right-sided heart catheterization,” Academic Radiology, vol. 4, no. 5, pp. 327–334, 1997.
[23]  E. Abel, A. Jankowski, C. Pison, J. L. Bosson, H. Bouvaist, and G. R. Ferretti, “Pulmonary artery and right ventricle assessment in pulmonary hypertension: correlation between functional parameters of ECG-gated CT and right-side heart catheterization,” Acta Radiologica, vol. 53, no. 7, pp. 720–727, 2012.
[24]  B. Boerrigter, G. J. Mauritz, J. T. Marcus et al., “Progressive dilatation of the main pulmonary artery is a characteristic of pulmonary arterial hypertension and is not related to changes in pressure,” Chest, vol. 138, no. 6, pp. 1395–1401, 2010.
[25]  R. Condliffe, M. Radon, J. Hurdman, et al., “CT pulmonary angiography combined with echocardiography in suspected systemic sclerosis-associated pulmonary arterial hypertension,” Rheumatology, vol. 50, no. 8, pp. 1480–1486, 2011.
[26]  R. S. Dusaj, K. C. Michelis, M. Terek et al., “Estimation of right atrial and ventricular hemodynamics by CT coronary angiography,” Journal of Cardiovascular Computed Tomography, vol. 5, no. 1, pp. 44–49, 2011.
[27]  F. Y. Lin, R. B. Devereux, M. J. Roman et al., “The right sided great vessels by cardiac multidetector computed tomography. Normative reference values among healthy adults free of cardiopulmonary disease, hypertension, and obesity,” Academic Radiology, vol. 16, no. 8, pp. 981–987, 2009.
[28]  R. T. Tan, R. Kuzo, L. R. Goodman, R. Siegel, G. B. Haasler, and K. W. Presberg, “Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease,” Chest, vol. 113, no. 5, pp. 1250–1256, 1998.
[29]  R. A. Pauwels, A. S. Buist, P. M. A. Calverley, C. R. Jenkins, and S. S. Hurd, “Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 5, pp. 1256–1276, 2001.
[30]  P. Quanjer, “ERS official statement on lung volumes and expiratory flows,” European Respiratory Journal, vol. 6, supplement 16, pp. 5–40, 1993.
[31]  R. O. Crapo, R. Casaburi, A. L. Coates et al., “ATS statement: guidelines for the six-minute walk test,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 1, pp. 111–117, 2002.
[32]  D. A. Mahler and A. Harvey, Dyspnea in Fishman AP Pulmonary Rehabilitation, Marcel Dekker, New York, NY, USA, 1996.
[33]  N. Buchbinder and W. Ganz, “Hemodynamic monitoring: invasive techniques,” Anesthesiology, vol. 45, no. 2, pp. 146–155, 1976.
[34]  D. A. Zisman, A. S. Karlamangla, D. J. Ross et al., “High-resolution chest CT findings do not predict the presence of pulmonary hypertension in advanced idiopathic pulmonary fibrosis,” Chest, vol. 132, no. 3, pp. 773–779, 2007.
[35]  E. H. Alhamad, A. A. Al-Boukai, F. A. Al-Kassimi, et al., “Prediction of pulmonary hypertension in patients with or without interstitial lung disease: reliability of CT findings,” Radiology, vol. 260, pp. 875–883, 2011.
[36]  M. Remy-Jardin, D. Delhaye, A. Teisseire, C. Hossein-Foucher, A. Duhamel, and J. Remy, “MDCT of right ventricular function: impact of methodologic approach in estimation of right ventricular ejection fraction,” American Journal of Roentgenology, vol. 187, no. 6, pp. 1605–1609, 2006.
[37]  P. J. Kilner, R. Balossino, G. Dubini et al., “Pulmonary regurgitation: the effects of varying pulmonary artery compliance, and of increased resistance proximal or distal to the compliance,” International Journal of Cardiology, vol. 133, no. 2, pp. 157–166, 2009.
[38]  G. R. Stevens and A. Garcia-Alvarez, “RV dysfunction in pulmonary hypertension is independently related to pulmonary artery stiffness,” JACC: Cardiovascular Imaging, vol. 5, no. 4, pp. 378–387, 2012.
[39]  D. D. Ivy, S. R. Neish, O. A. Knudson et al., “Intravascular ultrasonic characteristics and vasoreactivity of the pulmonary vasculature in children with pulmonary hypertension,” American Journal of Cardiology, vol. 81, no. 6, pp. 740–748, 1998.
[40]  J. C. Grignola, E. Domingo, R. Aguilar et al., “Acute absolute vasodilatation is associated with a lower vascular wall stiffness in pulmonary arterial hypertension,” International Journal of Cardiology, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133