全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Physical Exercise on the Level of DNA Damage in Chronic Obstructive Pulmonary Disease Patients

DOI: 10.1155/2013/907520

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study assessed the chronic effects of physical exercise on the level of DNA damage and the susceptibility to exogenous mutagens in peripheral blood cells of chronic obstructive pulmonary disease (COPD) patients. The case-control study enrolled COPD patients separated into two groups (group of physical exercise (PE-COPD; ); group of nonphysical exercise (COPD; )) and 51 controls. Peripheral blood was used to evaluate DNA damage by comet assay and lipid peroxidation by measurement of thiobarbituric acid reactive species (TBARS). The cytogenetic damage was evaluated by the buccal micronucleus cytome assay. The results showed that the TBARS values were significantly lower in PE-COPD than in COPD group. The residual DNA damage (induced by methyl methanesulphonate alkylating agent) in PE-COPD was similar to the controls group, in contrast to COPD group where it was significantly elevated. COPD group showed elevated frequency of nuclear buds (BUD) and condensed chromatin (CC) in relation to PE-COPD and control groups, which could indicate a deficiency in DNA repair and early apoptosis of the damaged cells. We concluded that the physical exercise for COPD patients leads to significant decrease of lipid peroxidation in blood plasma, decrease of susceptibility to exogenous mutagenic, and better efficiency in DNA repair. 1. Introduction The chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality in countries with different levels of economic development, and it is estimated that in 2020 the COPD will become the third leading cause of death all over the world [1, 2]. COPD is currently defined as a preventable and treatable disease characterized by airflow limitation, resulting from an abnormal inflammatory reaction to inhaled particles from cigarette smoking and associated with comorbidities [2]. The COPD is multifactorial and its pathology often includes systemic inflammation and oxidative stress [3, 4]. The formation of reactive oxygen species (ROS) by cigarette smoke and inflammatory cells, generated in the pulmonary epithelium, has been associated with slowly progressive and irreversible decrease in forced expiratory volume in one second (FEV1), loss of muscle mass, and muscle dysfunction [3, 4, 11] and probably modulates some of the systemic effects of COPD (i.e., skeletal muscles atrophy, osteoporosis, anemia, and cachexia [11, 12]). Some of the many different compounds in cigarette smoke can react directly with cellular components to form ROS while other carcinogens must be activated to produce single- and double-strand

References

[1]  R. Laniado-Laborín, “Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21st century,” International Journal of Environmental Research and Public Health, vol. 6, no. 1, pp. 209–224, 2009.
[2]  Global Strategy for the Diagnosis (Update 2011.), “Management and prevention of COPD. Global Initiative for Chronic Obstructive Lung Disease (GOLD)”.
[3]  J. E. Repine, A. Bast, and I. Lankhorst, “Oxidative stress in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 2 I, pp. 341–357, 1997.
[4]  T. L. Verhage, Y. F. Heijdra, J. Molema, L. Daudey, P. N. R. Dekhuijzen, and J. H. Vercoulen, “Adequate patient characterization in COPD: reasons to go beyond GOLD classification,” Open Respiratory Medicine Journal, vol. 3, pp. 1–9, 2009.
[5]  N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988.
[6]  P. L. Olive and J. P. Banath, “Radiation-induced DNA double-strand breaks produced in histone-depleted tumor cell nuclei measured using the neutral comet assay,” Radiation Research, vol. 142, no. 2, pp. 144–152, 1995.
[7]  S. B. Nadin, L. M. Vargas-Roig, and D. R. Ciocca, “A silver staining method for single-cell gel assay,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 9, pp. 1183–1186, 2001.
[8]  M. Dusinska and A. R. Collins, “The comet assay in human biomonitoring: gene-environment interactions,” Mutagenesis, vol. 23, no. 3, pp. 191–205, 2008.
[9]  A. R. Collins, M. Ai-guo, and S. J. Duthie, “The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells,” Mutation Research, vol. 336, no. 1, pp. 69–77, 1995.
[10]  E. D. Wills, “Mechanisms of lipid peroxide formation in animal tissues,” Biochemical Journal, vol. 99, no. 3, pp. 667–676, 1966.
[11]  E. S. Gladysheva, A. Malhotra, and R. L. Owens, “Influencing the decline of lung function in COPD: use of pharmacotherapy,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 5, pp. 153–164, 2010.
[12]  K. F. Chung and J. A. Marwick, “Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease,” Annals of the New York Academy of Sciences, vol. 1203, pp. 85–91, 2010.
[13]  H. Hoffmann, C. Isner, J. H?gel, and G. Speit, “Genetic polymorphisms and the effect of cigarette smoking in the comet assay,” Mutagenesis, vol. 20, no. 5, pp. 359–364, 2005.
[14]  J. Koshiol, M. Rotunno, D. Consonni et al., “Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study,” PLoS ONE, vol. 4, no. 10, Article ID e7380, 2009.
[15]  E. M. Mercken, G. J. Hageman, A. M. W. J. Schols, M. A. Akkermans, A. Bast, and E. F. M. Wouters, “Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 8, pp. 994–1001, 2005.
[16]  D. A. Rodriguez, S. Kalko, E. Puig-Vilanova et al., “Muscle and blood redox status after exercise training in severe COPD patients,” Free Radical Biology and Medicine, vol. 52, pp. 88–94, 2012.
[17]  E. G. Tzortzaki, K. Dimakou, E. Neofytou et al., “Oxidative DNA damage and somatic mutations: a link to the molecular pathogenesis of chronic inflammatory airway diseases,” Chest, vol. 141, no. 5, pp. 1243–1250, 2012.
[18]  G. Caramori, I. M. Adcock, P. Casolari et al., “Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer,” Thorax, vol. 66, no. 6, pp. 521–527, 2011.
[19]  A. Collins and V. Harrington, “Repair of oxidative DNA damage: assessing its contribution to cancer prevention,” Mutagenesis, vol. 17, no. 6, pp. 489–493, 2002.
[20]  J. Blasiak, M. Arabski, R. Krupa et al., “Basal, oxidative and alkylative DNA damage, DNA repair efficacy and mutagen sensitivity in breast cancer,” Mutation Research, vol. 554, no. 1-2, pp. 139–148, 2004.
[21]  ü. Mutlu-Türko?lu, Z. Akalin, E. Ilhan et al., “Increased plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in patients with angiographically defined coronary artery disease,” Clinical Biochemistry, vol. 38, no. 12, pp. 1059–1065, 2005.
[22]  M. Casella, M. Miniati, S. Monti, F. Minichilli, F. Bianchi, and S. Simi, “No evidence of chromosome damage in chronic obstructive pulmonary disease (COPD),” Mutagenesis, vol. 21, no. 2, pp. 167–171, 2006.
[23]  P. Thomas, N. Holland, C. Bolognesi et al., “Buccal micronucleus cytome assay,” Nature Protocols, vol. 4, no. 6, pp. 825–837, 2009.
[24]  Z. Radak, H. Y. Chung, and S. Goto, “Systemic adaptation to oxidative challenge induced by regular exercise,” Free Radical Biology and Medicine, vol. 44, no. 2, pp. 153–159, 2008.
[25]  A. M. Niess, A. Hartmann, M. Grünert-Fuchs, B. Poch, and G. Speit, “DNA damage after exhaustive treadmill running in trained and untrained men,” International Journal of Sports Medicine, vol. 17, no. 6, pp. 397–403, 1996.
[26]  A. Hartmann, A. M. Niess, M. Grunert-Fuchs, B. Poch, and G. Speit, “Vitamin E prevents exercise-induced DNA damage,” Mutation Research, vol. 346, no. 4, pp. 195–202, 1995.
[27]  M. Mergener, M. R. Martins, M. V. Antunes et al., “Oxidative stress and DNA damage in older adults that do exercises regularly,” Clinical Biochemistry, vol. 42, no. 16-17, pp. 1648–1653, 2009.
[28]  S. W. Maluf, M. Mergener, L. Dalcanale et al., “DNA damage in peripheral blood of patients with chronic obstructive pulmonary disease (COPD),” Mutation Research, vol. 626, no. 1-2, pp. 180–184, 2007.
[29]  M. H. Agnoletto, T. N. Guecheva, F. Dondé et al., “Association of low repair efficiency with high hormone receptors expression and SOD activity in breast cancer patients,” Clinical Biochemistry, vol. 40, no. 16-17, pp. 1252–1258, 2007.
[30]  N. Rajaee-Behbahani, P. Schmezer, A. Risch et al., “Altered DNA repair capacity and bleomycin sensitivity as risk markers for non-small cell lung cancer,” International Journal of Cancer, vol. 95, no. 2, pp. 86–91, 2001.
[31]  M. Schena, S. Guarrera, L. Buffoni et al., “DNA repair gene expression level in peripheral blood and tumour tissue from non-small cell lung cancer and head and neck squamous cell cancer patients,” DNA Repair, vol. 11, no. 4, pp. 374–380, 2012.
[32]  I. K. Demedts, T. Demoor, K. R. Bracke, G. F. Joos, and G. G. Brusselle, “Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema,” Respiratory Research, vol. 7, article 53, 2006.
[33]  I. M. Adcock, G. Caramori, and P. J. Barnes, “Chronic Obstructive pulmonary disease and lung cancer: new molecular insights,” Respiration, vol. 81, no. 4, pp. 265–284, 2011.
[34]  S. I. Rennard, S. Togo, and O. Holz, “Cigarette smoke inhibits alveolar repair: a mechanism for the development of emphysema,” Proceedings of the American Thoracic Society, vol. 3, no. 8, pp. 703–708, 2006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133