全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Robotics  2014 

An Improved ZMP-Based CPG Model of Bipedal Robot Walking Searched by SaDE

DOI: 10.1155/2014/241767

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposed a method to improve the walking behavior of bipedal robot with adjustable step length. Objectives of this paper are threefold. (1) Genetic Algorithm Optimized Fourier Series Formulation (GAOFSF) is modified to improve its performance. (2) Self-adaptive Differential Evolutionary Algorithm (SaDE) is applied to search feasible walking gait. (3) An efficient method is proposed for adjusting step length based on the modified central pattern generator (CPG) model. The GAOFSF is modified to ensure that trajectories generated are continuous in angular position, velocity, and acceleration. After formulation of the modified CPG model, SaDE is chosen to optimize walking gait (CPG model) due to its superior performance. Through simulation results, dynamic balance of the robot with modified CPG model is better than the original one. In this paper, four adjustable factors ( , , , and ) are added to the joint trajectories. Through adjusting these four factors, joint trajectories are changed and hence the step length achieved by the robot. Finally, the relationship between (1) the desired step length and (2) an appropriate set of , , , and searched by SaDE is learnt by Fuzzy Inference System (FIS). Desired joint angles can be found without the aid of inverse kinematic model. 1. Introduction Recently, many approaches have been adopted for generation of bipedal walking gait. Some researches [1–3] adopted a simplified dynamic model to generate walking gait calculated through inverse kinematic model which is complex and hence the computation load is high. Inspired by neural science, some researchers investigated central pattern generator (CPG). The prime reason for arousing their interest is that CPG models provide several parameters for modulation of locomotion, such as step stride and rhythm, and are suitable to integrate feedback sensors. Hence, a good interaction between the robot and the environment can be achieved [4]. According to Ijspeert [4], CPG becomes more and more popular in robot community. Taga et al. [5] integrated feedbacks with neural oscillators for unpredicted environment. Yang et al. [6], Shafii et al. [7], and Yazdi et al. [8] utilized TFS to formulate ZMP-based CPG model as the basic walking pattern of bipedal robot. Or [9] presented a hybrid CPG-ZMP control system for flexible spine humanoid robot. Aoi and Tsuchiya [10] proposed a locomotion control system based on CPG model for straight and curved walking. Farzenah et al. [11] noted that many researches on CPG model are designed for specific motion only and thus cannot generate

References

[1]  S. Kajita, F. Kanehiro, K. Kaneko et al., “Biped walking pattern generation by using preview control of zero-moment point,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1620–1626, September 2003.
[2]  J.-Y. Kim, I.-W. Park, and J.-H. Oh, “Walking control algorithm of biped humanoid robot on uneven and inclined floor,” Journal of Intelligent and Robotic Systems, vol. 48, no. 4, pp. 457–484, 2007.
[3]  K. Erbatur, O. Koca, E. Ta?kiran, M. Yilmaz, and U. Seven, “ZMP based reference generation for biped walking robots,” World Academy of Science, Engineering and Technology, vol. 58, pp. 943–950, 2009.
[4]  A. J. Ijspeert, “Central pattern generators for locomotion control in animals and robots: a review,” Neural Networks, vol. 21, no. 4, pp. 642–653, 2008.
[5]  G. Taga, Y. Yamaguchi, and H. Shimizu, “Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment,” Biological Cybernetics, vol. 65, no. 3, pp. 147–159, 1991.
[6]  L. Yang, C.-M. Chew, T. Zielinska, and A.-N. Poo, “A uniform biped gait generator with offline optimization and online adjustable parameters,” Robotica, vol. 25, no. 5, pp. 549–565, 2007.
[7]  N. Shafii, L. P. Reis, and N. Lau, “Biped walking using coronal and sagittal movements based on truncated Fourier series,” in Proceedings of 14th Annual Robo Cup International Symposium, pp. 324–335, 2010.
[8]  E. Yazdi, V. Azizi, and A. T. Haghighat, “Evolution of biped locomotion using bees algorithm, based on truncated Fourier series,” in Proceedings of the World Congress on Engineering and Computer Science, pp. 378–382, 2010.
[9]  J. Or, “A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot,” Neural Networks, vol. 23, no. 3, pp. 452–460, 2010.
[10]  S. Aoi and K. Tsuchiya, “Adaptive behavior in turning of an oscillator-driven biped robot,” Autonomous Robots, vol. 23, no. 1, pp. 37–57, 2007.
[11]  Y. Farzaneh, A. Akbarzadeh, and A. A. Akbaria, “Online bio-inspired trajectory generation of seven-link biped robot based on T-S fuzzy system,” Applied Soft Computing, 2013.
[12]  D. Gong, J. Yan, and G. Zuo, “A review of gait optimization based on evolutionary computation,” Applied Computational Intelligence and Soft Computing, vol. 2010, Article ID 413179, 12 pages, 2010.
[13]  H. Inada and K. Ishii, “Bipedal walk using a central pattern generator,” in Proceedings of International Congress Series, pp. 185–188, 2004.
[14]  K. Miyashita, S. Ok, and K. Hase, “Evolutionary generation of human-like bipedal locomotion,” Mechatronics, vol. 13, no. 8-9, pp. 791–807, 2003.
[15]  R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.
[16]  B. Hegery, C. C. Hung, and K. Kasprak, “A comparative study on differential evolution and genetic algorithms for some combinatorial problems,” in Proceedings of 8th Mexican International Conference on Artificial Intelligence, 2009.
[17]  T. Tu?ar and B. Filipi?, “Differential evolution versus genetic algorithms in multi-objective optimization,” in Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization, 2007.
[18]  J. Vesterstr?m and R. Thomsen, “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), pp. 1980–1987, June 2004.
[19]  A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC '05), pp. 1785–1791, September 2005.
[20]  A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009.
[21]  M. G. H. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive differential evolution,” in Proceedings of International Conference on Computational Intelligence and Security, pp. 192–199, 2005.
[22]  J. Brest, S. Greiner, B. Bo?kovi?, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.
[23]  L. Yang, C.-M. Chew, and A.-N. Poo, “Real-time bipedal walking adjustment modes using truncated fourier series formulation,” in Proceedings of the 7th IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS '07), pp. 379–384, December 2007.
[24]  C. Hern ndez-Santos, E. Rodriguez-Leal, R. Soto, and J. L. Gordillo, “Kinematics and dynamics of a new 16DOF Humanoid biped robot with active toe joint,” International Journal of Advanced Robotic Systems, vol. 9, no. 190, 2012.
[25]  K.-C. Choi, H.-J. Lee, and M. C. Lee, “Fuzzy posture control for biped walking robot based on force sensor for ZMP,” in Proceedings of the SICE-ICASE International Joint Conference, pp. 1185–1189, October 2006.
[26]  D. Tlalolini, Y. Aoustin, and C. Chevallereau, “Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization,” Multibody System Dynamics, vol. 23, no. 1, pp. 33–56, 2010.
[27]  A. P. Sudheer, R. Vijayakumar, and K. P. Mohanda, “Stable gait synthesis and analysis of a 12-degree of freedom biped robot in sagittal and frontal planes,” Journal of Automation, Mobile Robotics and Intelligent System, vol. 6, no. 4, pp. 36–44, 2012.
[28]  J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665–685, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413