全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lung Volume Reduction Surgery for Emphysema Treatment: State-of-the-Art and Perspectives

DOI: 10.1155/2014/418092

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lung volume reduction surgery (LVRS) has shown an improve for up to several years respiratory function, exercise capacity, and quality of life in selected patients with severe emphysema and low exercise capacity, particularly if upper-lobe predominance of disease is radiologically recognized. However, mortality and morbidity rates of LVRS have been not negligible leading to raising question as to the cost-effectiveness of the procedure and resulting in a progressive decline in its use although a considerable number of patients meet selection criteria and could potentially benefit of this treatment modality. In recent years, an active investigation aimed at developing less invasive strategies that might allow us to achieve long-term results as satisfactory as those of the standard LVRS method but with fewer adverse effects has been undertaken. So far, novel options including nonresectional surgical and endoscopic LVRS methods hold promise but results from large studies with long follow-up are awaited to help define the most effective interventional treatment options for patients with severe emphysema. In this literature review an analysis of the main issues related to LVRS including selection criteria, mechanisms of action, results of currently available surgical and endoscopic methods, and some potential future perspectives is provided. 1. Introduction Emphysema, one of the recognized chronic obstructive pulmonary disease (COPD) phenotypes, is an incurable, highly prevalent, and underdiagnosed condition, which represents the 4th cause of death in adults worldwide [1]. It is defined as an abnormal permanent enlargement of air spaces distal to the terminal bronchiole associated with destruction of their walls [2]. Pathophysiology of emphysema include reduced area for gas exchange and decreased lung elastic recoil with early expiratory airway collapse and increased airflow resistance resulting in lung hyperinflation. This effect is exaggerated during exercise when dynamic hyperinflation further impairs respiratory mechanics, increases work of breathing, and may even hinder cardiac filling, leading to dyspnea and reduced exercise performance. The cascade of detrimental effects of emphysema eventually impairs quality of life and increases mortality [3–6]. In the last 2 decades lung volume reduction surgery (LVRS) has emerged as an effective treatment modality, which can reverse detrimental effects of emphysema for a variable period of time leading to significant and long-lasting improvements in respiratory function, exercise capacity, quality of life, and

References

[1]  R. J. Halbert, J. L. Natoli, A. Gano, E. Badamgarav, A. S. Buist, and D. M. Mannino, “Global burden of COPD: systematic review and meta-analysis,” European Respiratory Journal, vol. 28, no. 3, pp. 523–532, 2006.
[2]  “Terminology, definitions and classification of chronic pulmonary emphysema and related conditions, Ciba symposium,” Thorax, vol. 14, pp. 286–299, 1959.
[3]  D. E. O'Donnell, M. Lam, and K. A. Webb, “Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease,” The American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 5, pp. 1557–1565, 1998.
[4]  D. E. O'Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” The American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 5, pp. 770–777, 2001.
[5]  A. Jubran and M. J. Tobin, “Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation,” The American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 3, pp. 906–915, 1997.
[6]  C. Casanova, C. Cote, J. P. de Torres et al., “Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease,” The American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 6, pp. 591–597, 2005.
[7]  J. D. Cooper, E. P. Trulock, A. N. Triantafillou et al., “Bilateral pneumectomy (volume reduction) for chronic obstructive pulmonary disease,” Journal of Thoracic and Cardiovascular Surgery, vol. 109, no. 1, pp. 106–119, 1995.
[8]  A. F. Gelb, R.J. McKenna Jr., M. Brenner, J. D. Epstein, and N. Zamel, “Lung function 5?yr after lung volume reduction surgery for emphysema,” The American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 7, pp. 1562–1566, 2001.
[9]  A. M. Ciccone, B. F. Meyers, T. J. Guthrie et al., “Long-term outcome of bilateral lung volume reduction in 250 consecutive patients with emphysema,” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 3, pp. 513–525, 2003.
[10]  K. S. Naunheim, D. E. Wood, Z. Mohsenifar et al., “Long-term follow-up of patients receiving lung-volume-reduction surgery versus medical therapy for severe emphysema by the national emphysema treatment trial research group,” The Annals of Thoracic Surgery, vol. 82, no. 2, pp. 431–443, 2006.
[11]  T. C. Mineo, E. Pompeo, D. Mineo, P. Rogliani, C. Leonardis, and I. Nofroni, “Results of unilateral lung volume reduction surgery in patients with distinct heterogeneity of emphysema between lungs,” Journal of Thoracic and Cardiovascular Surgery, vol. 129, no. 1, pp. 73–79, 2005.
[12]  E. Pompeo and T. C. Mineo, “Two-year improvement in multidimensional body mass index, airflow obstruction, dyspnea, and exercise capacity index after nonresectional lung volume reduction surgery in awake patients,” The Annals of Thoracic Surgery, vol. 84, no. 6, pp. 1862–1869, 2007.
[13]  W. Weder, M. Tutic, D. Lardinois et al., “Persistent benefit from lung volume reduction surgery in patients with homogeneous emphysema,” The Annals of Thoracic Surgery, vol. 87, no. 1, pp. 229–237, 2009.
[14]  G. J. Criner, F. C. Cordova, S. Furukawa et al., “Prospective randomized trial comparing bilateral lung volume reduction surgery to pulmonary rehabilitation in severe chronic obstructive pulmonary disease,” The American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 6, pp. 2018–2027, 1999.
[15]  D. Geddes, M. Davies, H. Koyama et al., “Effect of lung-volume-reduction surgery in patients with severe emphysema,” The New England Journal of Medicine, vol. 343, no. 4, pp. 239–245, 2000.
[16]  E. Pompeo, M. Marino, I. Nofroni, G. Matteucci, and T. C. Mineo, “Reduction pneumoplasty versus respiratory rehabilitation in severe emphysema: a randomized study,” The Annals of Thoracic Surgery, vol. 70, no. 3, pp. 948–954, 2000.
[17]  R. S. Goldstein, T. R. J. Todd, G. Guyatt et al., “Influence of lung volume reduction surgery (LVRS) on health related quality of life in patients with chronic obstructive pulmonary disease,” Thorax, vol. 58, no. 5, pp. 405–410, 2003.
[18]  G. Hillerdal, C.-G. L?fdahl, K. Str?m et al., “Comparison of lung volume reduction surgery and physical training on health status and physiologic outcomes: a randomized controlled clinical trial,” Chest, vol. 128, no. 5, pp. 3489–3499, 2005.
[19]  J. D. Miller, R. A. Malthaner, C. H. Goldsmith et al., “A randomized clinical trial of lung volume reduction surgery versus best medical care for patients with advanced emphysema: a two-year study from Canada,” The Annals of Thoracic Surgery, vol. 81, no. 1, pp. 314–321, 2006.
[20]  E. Pompeo, P. Rogliani, F. Tacconi et al., “Randomized comparison of awake nonresectional versus nonawake resectional lung volume reduction surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 143, no. 1, pp. 47–54, 2012.
[21]  A. Fishman, F. Martinez, K. Naunheim et al., “A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema,” The New England Journal of Medicine, vol. 348, no. 21, pp. 2059–2073, 2003.
[22]  M. M. DeCamp Jr., R. J. McKenna Jr., C. C. Deschamps, and M. J. Krasna, “Lung volume reduction surgery: technique, operative mortality, and morbidity,” Proceedings of the American Thoracic Society, vol. 5, no. 4, pp. 442–446, 2008.
[23]  National Emphysema Treatment Trial Research Group, “Cost effectiveness of lung-volume-reduction surgery for patients with severe emphysema,” The New England Journal of Medicine, vol. 348, pp. 2092–2102, 2003.
[24]  E. P. Ingenito, J. J. Reilly, S. J. Mentzer et al., “Bronchoscopic volume reduction: a safe and effective alternative to surgical therapy for emphysema,” The American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 2, pp. 295–301, 2001.
[25]  T. P. Toma, N. S. Hopkinson, J. Hillier et al., “Bronchoscopic volume reduction with valve implants in patients with severe emphysema,” The Lancet, vol. 361, no. 9361, pp. 931–933, 2003.
[26]  Y. Watanabe, K. Matsuo, A. Tamaoki, R. Komoto, and S. Hiraki, “Bronchial occlusion with endobronchial watanabe spigot,” Journal of Bronchology, vol. 10, no. 4, pp. 264–267, 2003.
[27]  E. A. Rendina, T. de Giacomo, F. Venuta et al., “Feasibility and safety of the airway bypass procedure for patients with emphysema,” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 6, pp. 1294–1299, 2003.
[28]  E. P. Ingenito, R. L. Berger, A. C. Henderson, J. J. Reilly, L. Tsai, and A. Hoffman, “Bronchoscopic lung volume reduction using tissue engineering principles,” The American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 5, pp. 771–778, 2003.
[29]  G. I. Snell, L. Holsworth, Z. L. Borrill et al., “The potential for bronchoscopic lung volume reduction using bronchial prostheses: a pilot study,” Chest, vol. 124, no. 3, pp. 1073–1080, 2003.
[30]  C. K. Choong, F. J. Haddad, E. Y. Gee, and J. D. Cooper, “Feasibility and safety of airway bypass stent placement and influence of topical mitomycin C on stent patency,” Journal of Thoracic and Cardiovascular Surgery, vol. 129, no. 3, pp. 632–638, 2005.
[31]  I. Y. P. Wan, T. P. Toma, D. M. Geddes et al., “Bronchoscopic lung volume reduction for end-stage emphysema: report on the first 98 patients,” Chest, vol. 129, no. 3, pp. 518–526, 2006.
[32]  F. C. Sciurba, A. Ernst, F. J. F. Herth et al., “A randomized study of endobronchial valves for advanced emphysema,” The New England Journal of Medicine, vol. 363, no. 13, pp. 1233–1244, 2010.
[33]  G. J. Criner, V. Pinto-Plata, C. Strange et al., “Biologic lung volume reduction in advanced upper lobe emphysema phase 2 results,” The American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 9, pp. 791–798, 2009.
[34]  Y. Refaely, M. Dransfield, M. R. Kramer et al., “Biologic lung volume reduction therapy for advanced homogeneous emphysema,” European Respiratory Journal, vol. 36, no. 1, pp. 20–27, 2010.
[35]  F. J. F. Herth, R. Eberhard, D. Gompelmann, D.-J. Slebos, and A. Ernst, “Bronchoscopic lung volume reduction with a dedicated coil: a clinical pilot study,” Therapeutic Advances in Respiratory Disease, vol. 4, no. 4, pp. 225–231, 2010.
[36]  G. I. Snell, P. Hopkins, G. Westall, L. Holsworth, A. Carle, and T. J. Williams, “A feasibility and safety study of bronchoscopic thermal vapor ablation: a novel emphysema therapy,” The Annals of Thoracic Surgery, vol. 88, no. 6, pp. 1993–1998, 2009.
[37]  R. Saad Jr., V. D. Neto, M. Botter, R. Stirbulov, J. H. Rivaben, and R. Gon?alves, “Therapeutic application of collateral ventilation with pulmonary drainage in the treatment of diffuse emphysema: report of the first three cases,” Jornal Brasileiro de Pneumologia, vol. 35, no. 1, pp. 14–19, 2009.
[38]  O. C. Brantigan and E. Mueller, “Surgical treatment of pulmonary emphysema,” The American Surgeon, vol. 23, no. 9, pp. 789–804, 1957.
[39]  O. C. Brantigan, E. Mueller, and M. B. Kress, “A surgical approach to pulmonary emphysema,” The American Review of Respiratory Disease, vol. 80, no. 1, pp. 194–206, 1959.
[40]  O. C. Brantigan, M. B. Kress, and E. A. Mueller, “The surgical approach to pulmonary emphysema,” Chest, vol. 39, no. 5, pp. 485–499, 1961.
[41]  R. J. Keenan, R. J. Landreneau, F. C. Sciurba et al., “Unilateral thoracoscopic surgical approach for diffuse emphysema,” Journal of Thoracic and Cardiovascular Surgery, vol. 111, no. 2, pp. 308–316, 1996.
[42]  T. C. Mineo, E. Pompeo, G. Simonetti et al., “Unilateral thoracoscopic reduction pneumoplasty for asymmetric emphysema,” European Journal of Cardio-Thoracic Surgery, vol. 14, no. 1, pp. 33–39, 1998.
[43]  R. M. Kotloff, G. Tino, H. I. Palevsky et al., “Comparison of short-term functional outcomes following unilateral and bilateral lung volume reduction surgery,” Chest, vol. 113, no. 4, pp. 890–895, 1998.
[44]  R. Bingisser, A. Zollinger, M. Hauser, K. E. Bloch, E. W. Russi, and W. Weder, “Bilateral volume reduction surgery for diffuse pulmonary emphysema by video-assisted thoracoscopy,” Journal of Thoracic and Cardiovascular Surgery, vol. 112, no. 4, pp. 875–882, 1996.
[45]  R. J. McKenna Jr., M. Brenner, A. F. Gelb et al., “A randomized, prospective trial of stapled lung reduction versus laser bullectomy for diffuse emphysema,” Journal of Thoracic and Cardiovascular Surgery, vol. 111, no. 2, pp. 317–322, 1996.
[46]  R. M. Kotloff, G. Tino, J. E. Bavaria et al., “Bilateral lung volume reduction surgery for advanced emphysema: a comparison of median sternotomy and thoracoscopic approaches,” Chest, vol. 110, no. 6, pp. 1399–1406, 1996.
[47]  S. R. Hazelrigg, T. M. Boley, M. J. Magee, C. H. Lawyer, and J. Q. Henkle, “Comparison of staged thoracoscopy and median sternotomy for lung volume reduction,” The Annals of Thoracic Surgery, vol. 66, no. 4, pp. 1134–1139, 1998.
[48]  R.J. McKenna Jr., M. Brenner, R. J. Fischel et al., “Patient selection criteria for lung volume reduction surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 114, no. 6, pp. 957–967, 1997.
[49]  National Emphysema Treatment Trial Research Group, “Patients at high risk of death after lung-volumereduction surgery,” The New England Journal of Medicine, vol. 345, pp. 1075–1083, 2001.
[50]  E. P. Ingenito, R. B. Evans, S. H. Loring et al., “Relation between preoperative inspiratory lung resistance and the outcome of lung-volume-reduction surgery for emphysema,” The New England Journal of Medicine, vol. 338, no. 17, pp. 1181–1185, 1998.
[51]  G. R. Washko, G. J. Criner, Z. Mohsenifar et al., “Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics,” Journal of Chronic Obstructive Pulmonary Disease, vol. 5, no. 3, pp. 177–186, 2008.
[52]  R. Benzo, “Lung volume reduction surgery: non-pharmacological approach,” Current Opinion in Anaesthesiology, vol. 24, pp. 44–48, 2011.
[53]  S. H. Loring, D. E. Leith, M. J. Connotti, et al., “Model of functional restriction in chronic obstructive pulmonary disease, transplantation and lung reduction surgery,” The American Journal of Respiratory and Critical Care Medicine, vol. 160, pp. 821–828, 1999.
[54]  F. J. Martinez, M. M. de Oca, R. I. Whyte, J. Stetz, S. E. Gay, and B. R. Celli, “Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function,” The American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 6, pp. 1984–1990, 1997.
[55]  R. B. Gorman, D. K. McKenzie, J. E. Butler, J. F. Tolman, and S. C. Gandevia, “Diaphragm length and neural drive after lung volume reduction surgery,” The American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 10, pp. 1259–1266, 2005.
[56]  F. C. Sciurba, R. M. Rogers, R. J. Keenan et al., “Improvement in pulmonary function and elastic recoil after lung reduction surgery for diffuse emphysema,” The New England Journal of Medicine, vol. 334, pp. 1095–1099, 1996.
[57]  A. F. Gelb, N. Zamel, R. J. Mckenna Jr., and M. Brenner, “Mechanism of short-term improvement in lung function after emphysema resection,” The American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 4 I, pp. 945–951, 1996.
[58]  E. P. Ingenito, S. H. Loring, M. L. Moy, S. J. Mentzer, S. J. Swanson, and J. J. Reilly, “Interpreting improvement in expiratory flows after lung volume reduction surgery in terms of flow limitation theory,” The American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 5, pp. 1074–1080, 2001.
[59]  H. E. Fessler and S. Permutt, “Lung volume reduction surgery and airflow limitation,” The American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 3, part 1, pp. 715–722, 1998.
[60]  E. M. Tschernko, W. Wisser, T. Wanke et al., “Changes in ventilatory mechanics and diaphragmatic function after lung volume reduction surgery in patients with COPD,” Thorax, vol. 52, no. 6, pp. 545–550, 1997.
[61]  Y. Lando, P. M. Boiselle, D. Shade et al., “Effect of lung volume reduction surgery on diaphragm length in severe chronic obstructive pulmonary disease,” The American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 3, pp. 796–805, 1999.
[62]  M. Cassart, J. Hamacher, Y. Verbandt et al., “Effects of lung volume reduction surgery for emphysema on diaphragm dimensions and configuration,” The American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 5, pp. 1171–1175, 2001.
[63]  K. E. Bloch, Y. Li, J. Zhang et al., “Effect of surgical lung volume reduction on breathing patterns in severe pulmonary emphysema,” The American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 2, part 1, pp. 553–560, 1997.
[64]  M. Oswald-Mammosser, R. Kessler, G. Massard, J.-M. Wihlm, E. Weitzenblum, and J. Lonsdorfer, “Effect of lung volume reduction surgery on gas exchange and pulmonary hemodynamics at rest and during exercise,” The American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 4, pp. 1020–1025, 1998.
[65]  M. L. Snyder, C. H. Goss, B. Neradilek et al., “Changes in arterial oxygenation and self-reported oxygen use after lung volume reduction surgery,” The American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 4, pp. 339–345, 2008.
[66]  G. Cremona, J. A. Barbara, T. Melgosa, et al., “Mechanisms of gas exchange response to lung volume reduction surgery in severe emphysema,” Journal of Applied Physiology, vol. 110, no. 4, pp. 1036–1045, 2011.
[67]  W. Huang, W. R. Wang, B. Deng et al., “Several clinical interests regarding lung volume reduction surgery for severe emphysema: meta-analysis and systematic review of randomized controlled trials,” Journal of Cardiothoracic Surgery, vol. 6, no. 1, article 148, 2011.
[68]  G. J. Criner, P. Belt, A. L. Sternberg et al., “Effects of lung volume reduction surgery on gas exchange and breathing pattern during maximum exercise,” Chest, vol. 135, no. 5, pp. 1268–1279, 2009.
[69]  T. Takayama, C. Shindoh, Y. Kurokawa et al., “Effects of lung volume reduction surgery for emphysema on oxygen cost of breathing,” Chest, vol. 123, no. 6, pp. 1847–1852, 2003.
[70]  T. C. Mineo, E. Pompeo, D. Mineo, V. Ambrogi, D. Ciarapica, and A. Polito, “Resting energy expenditure and metabolic changes after lung volume reduction surgery for emphysema,” The Annals of Thoracic Surgery, vol. 82, no. 4, pp. 1205–1211, 2006.
[71]  T. C. Mineo, E. Pompeo, P. Rogliani et al., “Effect of lung volume reduction surgery for severe emphysema on right ventricular function,” The American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 4, pp. 489–494, 2002.
[72]  K. J?rgensen, E. Houltz, U. Westfelt, F. Nilsson, H. Scherstén, and S.-E. Ricksten, “Effects of lung volume reduction surgery on left ventricular diastolic filling and dimensions in patients with severe emphysema,” Chest, vol. 124, no. 5, pp. 1863–1870, 2003.
[73]  G. J. Criner, S. M. Scharf, J. A. Falk et al., “Effect of lung volume reduction surgery on resting pulmonary hemodynamics in severe emphysema,” The American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 3, pp. 253–260, 2007.
[74]  I. L. Weg, L. Rossoff, K. McKeon, L. M. Graver, and S. M. Scharf, “Development of pulmonary hypertension after lung volume reduction surgery,” The American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 2, pp. 552–556, 1999.
[75]  R.J. McKenna Jr., M. Brenner, R. J. Fischel, and A. F. Gelb, “Should lung volume reduction for emphysema be unilateral or bilateral?” Journal of Thoracic and Cardiovascular Surgery, vol. 112, no. 5, pp. 1331–1339, 1996.
[76]  National Emphysema Treatment Trial Research Group, “Safety and efficacy of median sternotomy versus video-assisted thoracic surgery for lung volume reduction surgery,” The Journal of Thoracic and Cardiovascular Surgery, vol. 127, pp. 1350–1360, 2004.
[77]  M. de Perrot, M. Licker, and A. Spiliopoulos, “Muscle-sparing anterior thoracotomy for one-stage bilateral lung volume reduction operation,” The Annals of Thoracic Surgery, vol. 66, no. 2, pp. 582–584, 1998.
[78]  M. Argenziano, B. Thomashow, P. A. Jellen et al., “Functional comparison of unilateral versus bilateral lung volume reduction surgery,” The Annals of Thoracic Surgery, vol. 64, no. 2, pp. 321–327, 1997.
[79]  T. C. Mineo, E. Pompeo, P. Rogliani, S. Villaschi, C. Pistolese, and C. Simonetti, “Thoracoscopic reduction pneumoplasty for severe emphysema: do pleural adhesions affect outcome?” Thoracic and Cardiovascular Surgeon, vol. 47, no. 5, pp. 288–292, 1999.
[80]  F. Tacconi, E. Pompeo, and T. C. Mineo, “Late-onset occult pneumothorax after lung volume-reduction surgery,” The Annals of Thoracic Surgery, vol. 80, no. 6, pp. 2008–2012, 2005.
[81]  I. Oey and D. A. Waller, “Metalloptysis: a late complication of lung volume reduction surgery,” The Annals of Thoracic Surgery, vol. 71, no. 5, pp. 1694–1695, 2001.
[82]  M. Iqbal, L. Rossoff, K. McKeon, M. Graver, and S. M. Scharf, “Development of a giant bulla after lung volume reduction surgery,” Chest, vol. 116, no. 6, pp. 1809–1811, 1999.
[83]  K. S. Naunheim, D. E. Wood, M. J. Krasna et al., “Predictors of operative mortality and cardiopulmonary morbidity in the national emphysema treatment trial,” Journal of Thoracic and Cardiovascular Surgery, vol. 131, no. 1, pp. 43–53, 2006.
[84]  M. M. DeCamp, E. H. Blackstone, K. S. Naunheim et al., “Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the national emphysema treatment trial,” The Annals of Thoracic Surgery, vol. 82, no. 1, pp. 197–207, 2006.
[85]  J. D. Cooper, G. A. Patterson, R. S. Sundaresan et al., “Results of 150 consecutive bilateral lung volume reduction procedures in patients with severe emphysema,” Journal of Thoracic and Cardiovascular Surgery, vol. 112, no. 5, pp. 1319–1330, 1996.
[86]  R. J. Fischel and R. J. McKenna Jr., “Bovine pericardium versus bovine collagen to buttress staples for lung reduction operations,” The Annals of Thoracic Surgery, vol. 65, no. 1, pp. 217–219, 1998.
[87]  P. A. Thistlethwaite, J. D. Luketich, P. F. Ferson, R. J. Keenan, and S. W. Jamieson, “Ablation of persistent air leaks after thoracic procedures with fibrin sealant,” The Annals of Thoracic Surgery, vol. 67, no. 2, pp. 575–577, 1999.
[88]  W. S. Horsley and J. I. Miller Jr., “Management of the uncontrollable pulmonary air leak with cyanoacrylate glue,” The Annals of Thoracic Surgery, vol. 63, no. 5, pp. 1492–1493, 1997.
[89]  J. C. Wain, L. R. Kaiser, D. W. Johnstone et al., “Trial of a novel synthetic sealant in preventing air leaks after lung resection,” The Annals of Thoracic Surgery, vol. 71, no. 5, pp. 1623–1629, 2001.
[90]  S. R. Hazelrigg, T. M. Boley, K. S. Naunheim et al., “Effect of bovine pericardial strips on air leak after stapled pulmonary resection,” The Annals of Thoracic Surgery, vol. 63, no. 6, pp. 1573–1575, 1997.
[91]  U. Stammberger, W. Klepetko, G. Stamatis et al., “Buttressing the staple line in lung volume reduction surgery: a randomized three-center study,” The Annals of Thoracic Surgery, vol. 70, no. 6, pp. 1820–1825, 2000.
[92]  F. Tacconi, E. Pompeo, and T. C. Mineo, “Duration of air leak is reduced after awake nonresectional lung volume reduction surgery,” European Journal of Cardio-Thoracic Surgery, vol. 35, no. 5, pp. 822–828, 2009.
[93]  C. A. Keller, G. Ruppel, A. Hibbett, J. Osterloh, and K. S. Naunheim, “Thoracoscopic lung volume reduction surgery reduces dyspnea and improves exercise capacity in patients with emphysema,” The American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 1, pp. 60–67, 1997.
[94]  M. L. Moy, E. P. Ingenito, S. J. Mentzer, R. B. Evans, and J. J. Reilly Jr., “Health-related quality of life improves following pulmonary rehabilitation and lung volume reduction surgery,” Chest, vol. 115, no. 2, pp. 383–389, 1999.
[95]  J. Hamacher, S. Büchi, C. L. Georgescu et al., “Improved quality of life after lung volume reduction surgery,” European Respiratory Journal, vol. 19, no. 1, pp. 54–60, 2002.
[96]  T. C. Mineo, V. Ambrogi, E. Pompeo et al., “Impact of lung volume reduction surgery versus rehabilitation on quality of life,” European Respiratory Journal, vol. 23, no. 2, pp. 275–280, 2004.
[97]  R. Benzo, M. H. Farrell, C.-C. H. Chang et al., “Integrating health status and survival data: the palliative effect of lung volume reduction surgery,” The American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 3, pp. 239–246, 2009.
[98]  T. C. Mineo, V. Ambrogi, E. Pompeo, P. Bollero, D. Mineo, and I. Nofroni, “Body weight and nutritional changes after reduction pneumoplasty for severe emphysema: a randomized study,” Journal of Thoracic and Cardiovascular Surgery, vol. 124, no. 4, pp. 660–667, 2002.
[99]  D. Mineo, V. Ambrogi, V. Lauriola, E. Pompeo, and T. C. Mineo, “Recovery of body composition improves long-term outcomes after lung volume reduction surgery for emphysema,” European Respiratory Journal, vol. 36, no. 2, pp. 408–416, 2010.
[100]  E. Kozora, C. F. Emery, M. C. Ellison, F. S. Wamboldt, P. T. Diaz, and B. Make, “Improved neurobehavioral functioning in emphysema patients following lung volume reduction surgery compared with medical therapy,” Chest, vol. 128, no. 4, pp. 2653–2663, 2005.
[101]  S. Homan, S. Porter, M. Peacock, N. Saccoia, A. M. Southcott, and R. Ruffin, “Increased effective lung volume following lung volume reduction surgery in emphysema,” Chest, vol. 120, no. 4, pp. 1157–1162, 2001.
[102]  M. R. Lammi, N. Marchetti, S. Barnett, and G. J. Criner, “Heterogeneity of lung volume reduction surgery outcomes in patients selected by use of evidence-based criteria,” The Annals of Thoracic Surgery, vol. 95, no. 6, pp. 1905–1911, 2013.
[103]  G. R. Washko, V. S. Fan, S. D. Ramsey et al., “The effect of lung volume reduction surgery on chronic obstructive pulmonary disease exacerbations,” The American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 2, pp. 164–169, 2008.
[104]  H. F. Armstrong, J. Gonzalez-Costello, U. P. Jorde, et al., “The effect of lung volume reduction surgery on chronotropic incompetence,” Respiratory Medicine, vol. 106, pp. 1389–1395, 2012.
[105]  D. Chandra, D. A. Lipson, E. A. Hoffman et al., “Perfusion scintigraphy and patient selection for lung volume reduction surgery,” The American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 7, pp. 937–946, 2010.
[106]  I. F. Oey, D. A. Waller, S. Bal, S. J. Singh, T. J. Spyt, and M. D. L. Morgan, “Lung volume reduction surgery—a comparison of the long term outcome of unilateral vs. bilateral approaches,” European Journal of Cardio-Thoracic Surgery, vol. 22, no. 4, pp. 610–614, 2002.
[107]  M. Brenner, R. J. McKenna Jr., A. F. Gelb, R. J. Fischel, and A. F. Wilson, “Rate of FEV1 change following lung volume reduction surgery,” Chest, vol. 113, no. 3, pp. 652–659, 1998.
[108]  R. J. McKenna Jr., A. Gelb, and M. Brenner, “Lung volume reduction surgery for chronic obstructive pulmonary disease: where do we stand?” World Journal of Surgery, vol. 25, no. 2, pp. 231–237, 2001.
[109]  R.J. McKenna Jr., M. Brenner, R. J. Fischel, and A. F. Gelb, “Should lung volume reduction for emphysema be unilateral or bilateral?” Journal of Thoracic and Cardiovascular Surgery, vol. 112, no. 5, pp. 1331–1339, 1996.
[110]  M. D. Becker, Y. M. Berkmen, J. H. M. Austin et al., “Lung volumes before and after lung volume reduction surgery: quantitative CT analysis,” The American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 5, pp. 1593–1599, 1998.
[111]  E. Pompeo, G. Sergiacomi, I. Nofroni, W. Roscetti, G. Simonetti, and T. C. Mineo, “Morphologic grading of emphysema is useful in the selection of candidates for unilateral or bilateral reduction pneumoplasty,” European Journal of Cardio-Thoracic Surgery, vol. 17, no. 6, pp. 680–686, 2000.
[112]  G. A. Lowdermilk, R. J. Keenan, R. J. Landreneau et al., “Comparison of clinical results for unilateral and bilateral thoracoscopic lung volume reduction,” The Annals of Thoracic Surgery, vol. 69, no. 6, pp. 1670–1674, 2000.
[113]  D. L. Serna, M. Brenner, K. E. Osann et al., “Survival after unilateral versus bilateral lung volume reduction surgery for emphysema,” Journal of Thoracic and Cardiovascular Surgery, vol. 118, no. 6, pp. 1101–1109, 1999.
[114]  K. S. Naunheim, L. R. Kaiser, J. E. Bavaria et al., “Long-term survival after thoracoscopic lung volume reduction: a multiinstitutional review,” The Annals of Thoracic Surgery, vol. 68, no. 6, pp. 2026–2032, 1999.
[115]  E. Pompeo and T. C. Mineo, “Long-term outcome of staged versus one-stage bilateral thoracoscopic reduction pneumoplasty,” European Journal of Cardio-Thoracic Surgery, vol. 21, no. 4, pp. 627–633, 2002.
[116]  B. F. Meyers and G. A. Patterson, “Chronic obstructive pulmonary disease ? 10: bullectomy, lung volume reduction surgery, and transplantation for patients with chronic obstructive pulmonary disease,” Thorax, vol. 58, no. 7, pp. 634–638, 2003.
[117]  K. E. A. Burns, R. J. Keenan, W. F. Grgurich, J. D. Manzetti, and M. A. Zenati, “Outcomes of lung volume reduction surgery followed by lung transplantation: a matched cohort study,” The Annals of Thoracic Surgery, vol. 73, no. 5, pp. 1587–1593, 2002.
[118]  M. Tutic, D. Lardinois, S. Imfeld et al., “Lung-Volume Reduction Surgery as an Alternative or Bridging Procedure to Lung Transplantation,” The Annals of Thoracic Surgery, vol. 82, no. 1, pp. 208–213, 2006.
[119]  M. I. Hertz, D. O. Taylor, E. P. Trulock et al., “The registry of the international society for heart and lung transplantation: nineteenth official report—2002,” Journal of Heart and Lung Transplantation, vol. 21, no. 9, pp. 950–970, 2002.
[120]  M. Zenati, R. J. Keenan, R. J. Landreneau, I. L. Paradis, P. F. Ferson, and B. P. Griffith, “Lung reduction as bridge to lung transplantation in pulmonary emphysema,” The Annals of Thoracic Surgery, vol. 59, no. 6, pp. 1581–1583, 1995.
[121]  J. E. Bavaria, A. Pochettino, R. M. Kotloff et al., “Effect of volume reduction on lung transplant timing and selection for chronic obstructive pulmonary disease,” Journal of Thoracic and Cardiovascular Surgery, vol. 115, no. 1, pp. 9–18, 1998.
[122]  T. R. J. Todd, J. Perron, T. L. Winton, and S. H. Keshavjee, “Simultaneous single-lung transplantation and lung volume reduction,” The Annals of Thoracic Surgery, vol. 63, no. 5, pp. 1468–1470, 1997.
[123]  N. A. Yonan, A. El-Gamel, J. Egan, J. Kakadellis, A. Rahman, and A. K. Deiraniya, “Single lung transplantation for emphysema: predictors for native lung hyperinflation,” Journal of Heart and Lung Transplantation, vol. 17, no. 2, pp. 192–201, 1998.
[124]  E. Arango, D. Espinosa, J. Illana, et al., “Lung volume reduction surgery after lung transplantation for emphysema-chronic obstructive pulmonary disease,” Transplantation Proceedings, vol. 44, pp. 2115–2117, 2012.
[125]  S. D. Nathan, L. B. Edwards, S. D. Barnett, S. Ahmad, and N. A. Burton, “Outcomes of COPD lung transplant recipients after lung volume reduction surgery,” Chest, vol. 126, no. 5, pp. 1569–1574, 2004.
[126]  N. Shigemura, S. Gilbert, J. K. Bhama, et al., “Lung transplantation after lung volume reduction surgery,” Transplantation, vol. 96, pp. 421–425, 2013.
[127]  V. L. Crosa-Dorado, J. Pomi, and E. J. Perez-Penco, “Treatment of dyspnea in emphysema: pulmonary remodeling. Hemo- and pneumostatic suturing of the emphysematous lung,” Research in Surgery, vol. 4, no. 3, pp. 1–4, 1992.
[128]  S. J. Swanson, S. J. Mentzer, M. M. DeCamp Jr. et al., “No-cut thoracoscopic lung plication: a new technique for lung volume reduction surgery,” Journal of the American College of Surgeons, vol. 185, no. 1, pp. 25–32, 1997.
[129]  M. Iwasaki, N. Nishiumi, K. Kaga, M. Kanazawa, I. Kuwahira, and H. Inoue, “Application of the fold plication method for unilateral lung volume reduction in pulmonary emphysema,” The Annals of Thoracic Surgery, vol. 67, no. 3, pp. 815–817, 1999.
[130]  T. C. Mineo, E. Pompeo, D. Mineo, F. Tacconi, M. Marino, and A. F. Sabato, “Awake nonresectional lung volume reduction surgery,” Annals of Surgery, vol. 243, no. 1, pp. 131–136, 2006.
[131]  U. Stammberger, R. Thurnheer, R. A. Schmid, E. W. Russi, and W. Weder, “Redo lung volume reduction surgery in a patient with α1- antitrypsin deficiency,” The Annals of Thoracic Surgery, vol. 69, no. 2, pp. 632–633, 2000.
[132]  F. Tacconi, E. Pompeo, D. Forcella, M. Marino, D. Varvaras, and T. C. Mineo, “Lung volume reduction reoperations,” The Annals of Thoracic Surgery, vol. 85, no. 4, pp. 1171–1177, 2008.
[133]  S. Gasparini, L. Zuccatosta, M. Bonifazi, and C. T. Bolliger, “Bronchoscopic treatment of emphysema: state of the art,” Respiration, vol. 84, pp. 250–263, 2012.
[134]  Y. Watanabe, K. Matsuo, A. Tamaoki, R. Komoto, and S. Hiraki, “Bronchial occlusion with endobronchial watanabe spigot,” Journal of Bronchology, vol. 10, no. 4, pp. 264–267, 2003.
[135]  T. P. Toma, K. Matsuo, A. Tamaoki, et al., “Endoscopic bronchial occlusion with spigots in patients with emphysema (abstract),” The American Journal of Respiratory and Critical Care Medicine, vol. 165, p. B9, 2002.
[136]  F. J. F. Herth, M. Noppen, A. Valipour, et al., “Efficacy predictors of lung volume reduction with Zephyr valves in a European cohort,” European Respiratory Journal, vol. 39, pp. 1334–1342, 2012.
[137]  D. H. Sterman, A. C. Mehta, D. E. Wood et al., “A multicenter pilot study of a bronchial valve for the treatment of severe emphysema,” Respiration, vol. 79, no. 3, pp. 222–233, 2010.
[138]  W. Mitnzer, “Collateral ventilation,” in The Lung: Scientific Foundations, R. G. Crystal, Ed., pp. 1053–1063, Raven Press, New York, NY, USA, 1991.
[139]  N. W. Morrell, B. K. Wignall, T. Biggs, and W. A. Seed, “Collateral ventilation and gas exchange in emphysema,” The American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 3, pp. 635–641, 1994.
[140]  E. Reymond, A. Jankowski, C. Pison, et al., “Prediction of lobar collateral ventilation in 25 patients with severe emphysema by fissure analysis with CT,” The American Journal of Roentgenology, vol. 201, pp. W571–W575, 2013.
[141]  S. Mantri, C. Macaraeg, S. Shetty et al., “Technical advances: measurement of collateral flow in the lung with a dedicated endobronchial catheter system,” Journal of Bronchology, vol. 16, no. 2, pp. 141–144, 2009.
[142]  D. Gompelmann, R. Eberhardt, G. Michaud, A. Ernst, and F. J. F. Herth, “Predicting atelectasis by assessment of collateral ventilation prior to endobronchial lung volume reduction: a feasibility study,” Respiration, vol. 80, no. 5, pp. 419–425, 2010.
[143]  J. Reilly, G. Washko, V. Pinto-Plata et al., “Biological lung volume reduction: a new bronchoscopic therapy for advanced emphysema,” Chest, vol. 131, no. 4, pp. 1108–1113, 2007.
[144]  F. J. F. Herth, D. Gompelmann, F. Stanzel et al., “Treatment of advanced emphysema with emphysematous lung sealant (AeriSeal),” Respiration, vol. 82, no. 1, pp. 36–45, 2011.
[145]  D. J. Slebos, K. Klooster, A. Ernst, F. J. F. Herth, and H. A. Kerstjens, “Bronchoscopic lung volume reduction coil treatment of patients with severe heterogeneous emphysema,” Chest, vol. 142, pp. 574–582, 2012.
[146]  G. Snell, F. J. F. Herth, P. Hopkins, et al., “Bronchoscopic thermal vapor ablation therapy in the management of heterogeneous emphysema,” European Respiratory Journal, vol. 39, pp. 1326–1333, 2012.
[147]  C. K. Choong, P. T. Macklem, J. A. Pierce et al., “Airway bypass improves the mechanical properties of explanted emphysematous lungs,” The American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 9, pp. 902–905, 2008.
[148]  H. F. Lausberg, K. Chino, G. A. Patterson et al., “Bronchial fenestration improves expiratory flow in emphysematous human lungs,” The Annals of Thoracic Surgery, vol. 75, no. 2, pp. 393–398, 2003.
[149]  P. L. Shah, D.-J. Slebos, P. F. G. Cardoso et al., “Bronchoscopic lung-volume reduction with Exhale airway stents for emphysema (EASE trial): randomised, sham-controlled, multicentre trial,” The Lancet, vol. 378, no. 9795, pp. 997–1005, 2011.
[150]  P. Akuthota, D. Litmanovich, M. Zutler, et al., “An evidence-based estimate on the size of the potential patient pool for lung volume reduction surgery,” The Annals of Thoracic Surgery, vol. 94, pp. 205–211, 2012.
[151]  G. J. Criner, F. Cordova, A. L. Sternberg, and F. J. Martinez, “The National Emphysema Treatment Trial (NETT)—Part II: lessons learned about lung volume reduction surgery,” The American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 8, pp. 881–893, 2011.
[152]  T. Geiser, B. Schwizer, T. Krueger et al., “Outcome after unilateral lung volume reduction surgery in patients with severe emphysema,” European Journal of Cardio-Thoracic Surgery, vol. 20, no. 4, pp. 674–678, 2001.
[153]  B. F. Meyers, P. K. Sultan, T. J. Guthrie et al., “Outcomes after unilateral lung volume reduction,” The Annals of Thoracic Surgery, vol. 86, no. 1, pp. 204–212, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133