In this work, ultrasonic fatigue behavior of the Ti40Zr10Cu34Pd14Sn2 glassy alloy was investigated at 20 kHz at a stress ratio of R = -1. The number of cycles to failure in the S-N curve obtained in this work did not decrease again even after 107 - 108 cycles unlike previous findings for some steels. The fatigue endurance limit and the fatigue rate were σW = 762 MPa and σW/σB = 0.37, respectively. Fish-eye type inertial crack initiation, reported in many papers on giga-cycle fatigue testing, was not observed. A tendency for the fatigue strength of the Ti40Zr10Cu34Pd14Sn2 glassy alloy specimens to be divided into two groups was observed, that is, specimens with a short fatigue lifetime (<106 cycles) with distinct cast defects as crack initiation sites and the other specimens with a long fatigue lifetime (>106 cycles). This may have been caused by accidental nucleation of micro-defects such as impurities, voids and precipitates in the glassy rod specimens during the casting.
References
[1]
Inoue, A., Shen, B.L., Koshiba, H., Kato, H. and Yavari, A.R. (2003) Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties. Nature Materials, 2, 661-663. http://dx.doi.org/10.1038/nmat982
[2]
Yoshioka, H., Asami, K., Kawashima, A. and Hashimoto, K. (1987) Laser-Processed Corrosion-Resistant Amorphous Ni-Cr-P-B Surface Alloys on a Mild Steel. Corrosion Science, 27, 981-995.
http://dx.doi.org/10.1016/0010-938X(87)90064-3
[3]
Fujimori, H., Masumoto, T., Obi, Y. and Kikuchi, M. (1974) On the Magnetization Process in an Iron-Phosphorus- Carbon amorphous Ferromagnet. Japanese Journal of Applied Physics, 13, 1889-1890.
http://dx.doi.org/10.1143/JJAP.13.1889
[4]
Oshida, Y. and Miyazaki, S. (1991) Corrosion and Biocompatibility of Shape Memory Alloys. Zairyo-to-Kankyo, 40, 834-844. (in Japanese)
[5]
(2010) Data Sheet on Giga-Cycle Fatigue Properties of Ti-6Al-4V (900 MPa CLASS) Titanium Alloy at High Stress Ratios, NIMS Fatigue Data Sheet, No. 111.
[6]
Oguma, H. and Nakamura, T. (2010) The Effect of Microstructure on Very High Cycle Fatigue Properties in Ti-6Al- 4V. Scripta Materialia, 63, 32-34. http://dx.doi.org/10.1016/j.scriptamat.2010.02.043
[7]
Tsutsumi, H., Niinomi, M., Akahori, T., Nakai, M., Takeuchi, T. and Katsura, S. (2010) Mechanical Properties of a β-Type Titanium Alloy Cast Using a Calcia Mold for Biomedical Applications. Materials Transactions, 51, 136-142.
http://dx.doi.org/10.2320/matertrans.L-M2009828
[8]
Nakai, M., Niinomi, M. and Oneda, T. (2012) Improvement in Fatigue Strength of Biomedical β-Type Ti-Nb-Ta-Zr Alloy While Maintaining Low Young’s Modulus through Optimizing ω-Phase Precipitation. Metallurgical and Materials Transactions A, 43A, 294-302.
[9]
Zhu, S.L., Wang, X.M., Qin, F.X., Yoshimura, M. and Inoue, A. (2007) New TiZrCuPd Quaternary Bulk Glassy Alloys with Potential of Biomedical Applications. Materials Transactions, 48, 2445-2448.
http://dx.doi.org/10.2320/matertrans.MRA2007086
[10]
Zhu, S.L., Wang, X.M. and Inoue, A. (2008) Glass-Forming Ability and Mechanical Properties of Ti-Based Bulk Glassy Alloys with Large Diameters of up to 1 cm. Intermetallics, 16, 1031-1035.
http://dx.doi.org/10.1016/j.intermet.2008.05.006
[11]
Takahashi, K. and Ogawa, T. (2008) Evaluation of Giga-Cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test. Journal of Solid Mechanics and Materials Engineering, 2, 366-373.
http://dx.doi.org/10.1299/jmmp.2.366
[12]
Shiozawa, K., Morii, Y., Nishino, S. and Liu, L.T. (2006) Subsurface Crack Initiation and Propagation Mechanism in High-Strength Steel in a Very High Cycle Fatigue Regime. International Journal of Fatigue, 28, 1520-1532.
http://dx.doi.org/10.1016/j.ijfatigue.2005.08.015
[13]
Murakami, Y., Takada, M. and Toriyama, T. (1998) Super-Long Life Tension-Compression Fatigue Properties of Quenched and Tempered 0.46% Carbon Steel. International Journal of Fatigue, 16, 661-667.
http://dx.doi.org/10.1016/S0142-1123(98)00028-0
[14]
Gilbert, C.J., Lippmann, J.M. and Ritchie, R.O. (1998) Fatigue of a Zr-Ti-Cu-Ni-Be Bulk Amorphous Metal: Stress/ Life and Crack-Growth Behavior. Scripta Materialia, 38, 537-542. http://dx.doi.org/10.1016/S1359-6462(97)00522-8
[15]
Yokoyama, Y., Nishiyama, N., Fukaura, K., Sunada, H. and Inoue, A. (1999) Rotating-Beam Fatigue Strength of Pd40Cu30Ni10P20 Bulk Amorphous Alloy. Materials Transactions, JIM, 40, 696-699.
[16]
Wang, G.Y., Liaw, P.K., Peker, A., Yang, B., Benson, M.L., Yuan, W., Peter, W.H., Huang, L., Freels, M., Buchanan, R.A., Liu, C.T. and Brooks, C.R. (2005) Fatigue Behavior of Zr-Ti-Ni-Cu-Be Bulk-Metallic Glasses. Intermetallics, 13, 429-435. http://dx.doi.org/10.1016/j.intermet.2004.07.037
[17]
Wang, G.Y., Liaw, P.K., Yokoyama, Y., Inoue, A. and Liu, C.T. (2008) Fatigue Behavior of Zr-Based Bulk-Metallic Glasses. Materials Science and Engineering A, 494, 314-323. http://dx.doi.org/10.1016/j.msea.2008.04.034
[18]
Menzel, B.C. and Dauskardt, R.H. (2008) Fatigue Damage Initiation and Growth from Artificial Defects in Zr-Based Metallic Glass. Acta Materialia, 56, 2955-2965. http://dx.doi.org/10.1016/j.actamat.2008.02.029
[19]
Fujita, K., Zhang, W., Shen, B.L., Amiya, K., Ma, C.L. and Nishiyama, N. (2012) Fatigue Properties in High Strength Bulk Metallic Glasses. Intermetallics, 30, 12-18. http://dx.doi.org/10.1016/j.intermet.2012.03.021
[20]
Salama, K. and Lamerand, R.K. (1981) The Prediction of Fatigue Life Using Ultrasound Testing. Proceedings of the first International Conference on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Pennsylvania, 25-30 October 1981, 109-118.
[21]
Yamaura, S. and Fujita, K. (2014) Ultra-High Cycle Fatigue Properties in Zr55Al10Ni5Cu30 Metallic Glassy Alloy Using Ultrasonic Fatigue Testing Machine. Journal of the Society of Materials Science, Japan, 63, 473-479.
http://dx.doi.org/10.2472/jsms.63.473